
www.manaraa.com

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

MODELING AND MAPPING FOR DYNAMICALLY RECONFIGURABLE

HYBRID ARCHITECTURES

by

Kiran Kumar Bondaiapati

A Dissertation Presented to the

FACULTY OF THE GRADUATE SCHOOL

UNIVERSITY OF SOUTHERN CALIFORNIA

In Partial Fulfillment of the

Requirements for the Degree

DOCTOR OF PHILOSOPHY

(COMPUTER ENGINEERING)

August 2001

Copyright 2001 Kiran Kumar Bondaiapati

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

UMI Number: 3054713

Copyright 2001 by

Bondaiapati, Kiran Kumar

All rights reserved.

_ ___ _®

UMI
UMI Microform 3054713

Copyright 2002 by ProQuest Information and Learning Company.
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

UNIVERSITY OF SOUTHERN CALIFORNIA
THE GRADUATE SCHOOL

UNIVERSITY PARK
LOS ANGELES. CALIFORNIA 90007

This dissertation, written by
KIRAN K. BONDAIAPATI

under the direction of h.I S Dissertation
Committee, and approved by all its members,
has been presented to and accepted by The
Graduate School, in partial fulfillment of re­
quirements for the degree of

DOCTOR OF PHILOSOPHY

D ean o f Graduate Studies

DISSERTATION COMMITTEE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Dedication

To My Grandfather M.V. Ramaiah

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Acknowledgments

I would like to thank Dr. Viktor Prasanna, my advisor at USC, for his guidance, en­

couragement, support, and vision throughout my PhD program. In addition to academic

guidance, he has been a motivating force in the development of my professional skills

and perspective of research. In the long road to my dissertation he provided me excel­

lent direction and moral support when I faltered in my approach. I understood the pro­

cess of abstracting the underlying principles and applying problem solving techniques

to multiple domains wholly due to his teaching. I really appreciate the flexibility and un­

derstanding Dr. Prasanna has shown towards helping me balance my professional and

personal responsibilities. His contribution towards my professional and career growth

goes far beyond technical and academic advisement. I have been extremely fortunate

to have him as my advisor and to have known him as a person over the last few years.

I also thank the members of my qualifying examination and defense committees,

Dr. Peter Beerel, Dr. Michel Dubois, Dr. Mary Hall, and Dr. Ulrich Neuman for their

suggestions.

It has been a wonderful experience to participate in collaborative research efforts

with several of my fellow graduate students during my Ph.D. program. I have shared

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

thoughts on research and other things over daily lunches with Andreas Dandalis, who

has been an excellent sounding board for all my ideas. I thank the other founding mem­

bers of the MAARC research group Seonil Choi and Reetinder Sidhu for making the

joint effort a success. Through the years, other students of Pgroup have made my Ph.D.

study an enriching experience - Ammar Alhusaini, Amol Bakshi, PrashantBhat, Myungho

Lee, Young Won Lim, Wenheng Liu, Vaibhav Mathur, Sumit Mohanty, Neungsoo Park,

Michael Penner, Cauligi Raghavendra, Mark Redekopp, Mitali Singh, Jinwoo Suh, among

others. Henryk Chrostek and Christine Contreras have been instrumental in making my

non-academic affairs run smoothly throughout my stay.

I thank the Department of Defense and National Science Foundation for support­

ing our research and providing opportunities to frequently visit and interact with active

researchers all over the world.

I thank my parents Prasad and Bharathi, my sister Dr. Lalitha, brother-in-law Dr.

Narendra and nephew Monish for being extremely encouraging and patient with my

seemingly never ending academic pursuits for the last twenty years, culminating in my

Ph.D. Throughout my Ph.D. study, several of my friends provided the needed encour­

agement for working and diversion from academics as appropriate. There are one too

many to name, but it would have been tough to get through the long haul without them.

Last, but not the least, I would like to thank my undergraduate teachers and notably Prof.

P.C.P. Bhatt, my undergraduate advisor, for instigating in me the scientific curiosity to

pursue a doctoral degree.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Contents

Dedication ii

Acknowledgments iii

List of Figures viii

List of Tables x

Abstract 1

1 Introduction 3
1.1 Thesis Contributions... 9

1.1.1 Hybrid System Architecture Model (HySAM)........................... 9
1.1.2 Mapping Techniques... 10
1.1.3 Simulation Framework ... 12

1.2 Thesis O u tlin e ... 12

2 Reconfigurable Computing 14
2.1 Classification... 15
2.2 Field Programmable Gate Array S y s te m s .. 19

2.2.1 SPLA SH.. 22
2.2.2 Xilinx 6200 .. 23
2.2.3 NSC CLAy .. 24
2.2.4 Xilinx Virtex.. 25
2.2.5 Dynamically Programmable Gate Array (D PG A)...................... 26

2.3 Hybrid Architectures... 27
2.3.1 Convergence in Hybrid Architectures.. 28
2.3.2 O neC hip .. 29
2.3.3 Berkeley G a rp .. 30
2.3.4 National Adaptive Processing Architecture (NAPA).................. 30
2.3.5 Xilinx Platform FPG A .. 31
2.3.6 T riscen d .. 33
2.3.7 Chameleon Systems R C P ... 35

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3 Approach 41
3.1 Challenges.. 42

3.1.1 Static vs. Dynamic Reconfiguration... 42
3.1.2 Design Methodologies... 44
3.1.3 Multi-dimensional Optimization... 46
3.1.4 Design Tools.. 48

3.2 Approach ... 51
3.2.1 Model based Reconfigurable Computing 53
3.2.2 Loop C om putations.. 55
3.2.3 Definitions... 57

4 Related Work 59

5 Hybrid System Architecture Model (HySAM) 65
5.1 Hybrid System Architecture Model (HySAM)....................................... 67
5.2 Functions and C onfigurations... 69
5.3 A ttr ib u te s ... 71
5.4 Memory A ccess .. 72
5.5 Reconfiguration and Configuration C a c h e .. 73
5.6 Generative A spect... 75

5.6.1 Generators.. 76
5.6.2 Reconfiguration C o s t ... 78

5.7 Execution Model.. 79

6 Mapping Techniques 81
6.1 Generic Mapping Problem (G M P)... 82

6.1.1 NP-Completeness... 83
6.2 Loop Synthesis... 84

6.2.1 Linear Loop Synthesis... 85
6.2.2 Linear Loop Mapping P ro b le m ... 86
6.2.3 Optimal Solution ... 86
6.2.4 Illustrative E xam ple .. 91
6.2.5 Mapping Configurations onto Multiple C o n te x ts 93
6.2.6 Multicontext Loop Mapping P rob lem ... 95

6.3 Dynamic Precision Management... 98
6.3.1 Overview of Dynamic Precision Variation.................................. 101
6.3.2 Precision Requirement Analysis... 103
6.3.3 Precision Variation C u rv e .. 105
6.3.4 Theoretical Analysis of Loops.. 105
6.3.5 Run-time A nalysis... 108
6.3.6 Dynamic Precision Management ... 110
6.3.7 Precision Management Problem (P M P)..................................... I l l

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

6.3.8 Precision Management A lg o rith m s.. 115
6.3.9 An Illustrative E xam ple.. 117
6.3.10 A pp lica tion ... 120

7 Mapping onto Reconfigurable Pipelines 122
7.1 Mapping Nested L o o p s .. 123

7.1.1 Parallelizing Nested DSP L o o p s.. 125
7.1.2 P ipe lin ing .. 127
7.1.3 Limitations on the Throughput .. 129
7.1.4 Data Context Switching (D C S) .. 131
7.1.5 DSP/Microprocessor Implementations... 136
7.1.6 Performance Summary .. 137
7.1.7 Performance Results.. 137

7.2 Reconfiguring P ipelines.. 140
7.2.1 Definitions.. 141
7.2.2 Pre-processing and Mapping... 143
7.2.3 P artition ing ... 144
7.2.4 Routing Considerations... 145
7.2.5 Pipeline Segmentation.. 147
7.2.6 Performance Results.. 148

8 DRIVE Simulation Framework 152
8.1 M otivation.. 155
8.2 DRIVE O v erv iew ... 157
8.3 Other Simulation T o o l s .. 159
8.4 DRIVE Framework Implementation.. 160
8.5 Visualization... 165
8.6 DRIVE S u m m a ry .. 167

9 Conclusions and Future Directions 169
9.1 Future Directions ... 174

References 178

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

List of Figures

1.1 International Technology Roadmap for Semiconductors................. 7
1.2 Makimoto’s w a v e .. 8

2.1 Typical FPGA Board, Device and Logic block architecture.......... 20
2.2 DPGA architecture and composition... 26
2.3 Triscend A7 CSoC architecture block diagram................................ 34
2.4 Chameleon Reconfigurable Communications Processor (RCP) Archi­

tecture 35
2.5 Reconfigurable Processing Fabric (R PF).. 37
2.6 Chameleon software tool f lo w ... 40

3.1 Static configurable com puting ... 43
3.2 Dynamic configurable com puting .. 43
3.3 Traditional Design Synthesis A p p ro ach .. 45
3.4 Constraint space of optimization in reconfigurable architectures 47
3.5 Multi-dimensional configurable architecture characteristics.......... 48
3.6 Chameleon design tools flow.. 50
3.7 Model-based Approach .. 54

5.1 Hybrid System Architecture Model and example architecture....... 68
5.2 Example Reconfiguration... 74
5.3 Two different com positions.. 79
5.4 HySAM execution m o d e l ... 80

6.1 Example reconfiguration costs and optimal configuration sequence . . 88
6.2 Overview of our approach for dynamic precision management in loopsfshaded

and rounded regions indicate our contributions).............................. 102
6.3 Example code for sim ulations... 106
6.4 Precision Variation Curves for RSQ using theoretical and run-time anal­

ysis 108
6.5 Multiplication operation from sample code ... 117

7.1 Mapping of loop body to one stage .. 128
7.2 Pipelined datapath of all ten stages.. 129

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

7.3 Dataflow in original design ... 132
7.4 Dataflow in dynamic context sw itch in g 132
7.5 Optimized datapath for one stage ... 135
7.6 (a) N-body simulation task DAG and (b) FFT task DAG with partition

nu m b ers ... 146
7.7 Algorithm to generate the pipeline segments................................ 149

8.1 DRIVE framework.. 157
8.2 Major components in the DRIVE framework and the information flow 161
8.3 Sample DRIVE visualization ... 166

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

List of Tables

5.1 HySAM model parameters and definitions... 69

6.1 Representative Model Parameters for Garp Architecture......................... 92
6.2 Theoretical and simulated iteration numbers for N = 1024 117
6.3 HySAM model parameters for XC6200 multiplier configurations . . . 118
6.4 Execution times using different ap p ro ach es .. 120

7.1 Analytical performance sum m ary ... 137
7.2 Platform characteristics.. 138
7.3 Performance Results and S p eed u p s ... 138
7.4 Schedules forN-body simulation (a) So'. Greedy Scheduling (b) 5 /: Sched­

ule after segm entation 148
7.5 Schedules for FFT (a) So: Greedy Scheduling (b) 5/: Schedule after

segmentation... 148
7.6 Virtex module characteristics... 150
7.7 Reconfiguration costs in number of Virtex slices..................................... 150

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Abstract

Reconfigurable computing is a new paradigm based on dynamically adapting the

hardware to reconfigure the computation and communication structures on the chip. Re­

configurable circuits and systems have evolved from application specific accelerators to

a general purpose computing paradigm. Various reconfigurable devices have been de­

veloped by researchers and the industry. These devices promise a high degree of flexi­

bility and superior performance. But, the algorithmic techniques and software tools are

also heavily based on the hardware paradigm from which they have evolved.

This thesis addresses the fundamental challenges in achieving high performance us­

ing reconfigurable architectures. The diverse range of issues in mapping applications

onto reconfigurable architectures are identified. A formal framework for mapping ap­

plication tasks onto reconfigurable architectures is proposed in this thesis. The pro­

posed framework includes a parameterized system level model, algorithmic mapping

techniques and system level interpretive simulation environment.

A parameterized model of hybrid reconfigurable architectures, Hybrid System Ar­

chitecture Model (HySAM), is developed to facilitate application mapping. Hybrid re­

configurable architectures include traditional processing units and memory on the same

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

die as reconfigurable logic. The parameterized abstract model, HySAM, is general enough

to capture a wide range of configurable systems. Loop statements in traditional pro­

grams consist of regular, repetitive computations which are the most likely candidates

for performance enhancement using configurable hardware. This thesis develops a for­

mal methodology for mapping loops onto reconfigurable architectures. The abstract

model is used to define and solve the problem of mapping loop statements onto reconfig­

urable architectures. The complexity of the problems and our proposed solutions is also

addressed. Performance improvements are achieved on various architectures using our

algorithmic techniques for mapping. In addition, existing design and simulation tools do

not include the reconfiguration aspect in their methodology. A simulation methodology

for reconfigurable architectures is proposed and validated by implementing a proof of

concept tool. The Dynamically Reconfigurable systems Interpretive simulation and Vi­

sualization Environment (DRIVE) facilitates high level performance evaluation frame­

work for design space exploration.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 1

Introduction

It would appear that we have reached the limits o f what it is possible to

achieve with computer technology, although one should be careful with such

statements, as they tend to sound pretty silly in 5 years.

— John Von Neumann (ca. 1949)

Microprocessors are at the heart of most current high performance computing plat­

forms. They provide a flexible computing platform and are capable of executing large

class of applications. Software for microprocessors is developed by implementing higher

level functions using the instruction set of the architecture. As a result, the same fixed

hardware can be used for many general purpose applications. Unfortunately, this gener­

ality is achieved at the expense of performance. The software program stored in mem­

ory has to be fetched, decoded and executed. In addition, data is fetched from and stored

back into memory. These conditions force explicit sequentialization in the execution of

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

the program. Casting all complex functions into simpler instructions to be executed se­

quentially on the processor results in degraded performance.

Application Specific Integrated Circuits (ASICs) provide an alternate solution which

addresses the performance issues of general purpose microprocessors. ASICs are de­

signed for a specific application and hence, each ASIC has fixed functionality and supe­

rior performance for a highly restricted set of applications. However, ASICs restrict the

flexibility of the architecture and exclude any post-design optimizations and upgrades

in features and algorithms.

A new computing paradigm using reconfigurable computing promises an interme­

diate trade-off between flexibility and performance. Reconfigurable computing utilizes

hardware that can be adapted at run-time to facilitate greater flexibility without com­

promising performance. Reconfigurable architectures can exploit fine grain and coarse

grain parallelism available in the application because of the adaptability. Exploiting this

parallelism provides significant performance advantages compared to conventional mi­

croprocessors. The reconfigurability of the hardware permits adaptation of the hardware

for specific computations in each application to achieve higher performance compared

to software. Complex functions can be mapped onto the architecture achieving higher

silicon utilization and reducing the instruction fetch and execute bottleneck.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Reconfigurable logic1 can be defined to consist of matrix of programmable computa­

tional units with a programmable interconnection network superimposed on the compu­

tational matrix. The basic differences of reconfigurable logic compared with traditional

processing include:

• Spatial Computation: The data is processed by spatially distributing the compu­

tations rather than temporally sequencing through a shared computational unit.

• Configurable Datapath: The functionality of the computational units and the in­

terconnection network can be adapted at run-time by using a configuration mech­

anism.

• Distributed Control: The computational units process data based on local config­

uration rather than an instruction broadcast to all the functional units.

• Distributed Resources: The required resources for computation, such as compu­

tational units and memory are distributed throughout the device instead of being

localized in a single location.

The spatial distribution of the computations and the distributed control and resources

result in higher computational power efficiency for reconfigurable computing compared

to microprocessors, DSPs and ASICs. Computational power efficiency is defined as

‘The distinction between configurable and reconfigurable logic is fuzzy at best. Some definitions of
configurable restrict it to logic that can be programmed one time and used for computation. Such devices
do not have the non-recurring engineering (NRE) costs associated with ASICs. Reconfigurable logic is
defined to be a device that can be reprogrammed at run-time, in between computations, in the field. In
this thesis, we use adaptive, configurable and reconfigurable to mean reconfigurable at run-time.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

the number of the number of gates actively working in a clock cycle to solve a prob­

lem to the total number of gates in a device. In traditional architectures like micropro­

cessors and DSPs large portion of the chip is utilized to support active computation in

a much smaller portion of the chip. Reconfigurable computing can have significantly

higher computational power efficiency compared with conventional microprocessors

and ASICs [54].

Reconfigurable architectures have evolved from Field Programmable Gate Arrays

(FPGAs) [65]. FPGAs consist of a matrix of logic blocks and interconnection network.

The functionality of the logic blocks and the connections in the interconnection net­

work can be modified by downloading bits of configuration data onto the hardware.

Currently, hybrid architectures which integrate programmable logic and interconnect

together with a microprocessor on the same chip are being developed. On-chip integra­

tion of reconfigurable logic reduces the memory access costs and the reconfiguration

costs. The availability of increasingly larger number of transistors [2] (see Figure 1.1)

facilitates the integration of reconfigurable logic with other components on system on a

chip (SoC) architectures.

Applications are mapped onto reconfigurable architectures by analyzing the compu­

tations performed. Computations that can be speeded up by using reconfigurable hard­

ware are identified and mapped onto the reconfigurable hardware. In the presence of a

microprocessor, the computations which have complex control and data structures are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Technology Roadmap for Semiconductors
4500

4000

3500

c 3000

£ 2500

~ 2000

S 1500

1000

500

2000 2002 2004 2006 2008 2010 2012 2014

Year

Figure 1.1: International Technology Roadmap for Semiconductors

executed on the microprocessor. The partitioning of the computations of an applica­

tion between the microprocessor and the reconfigurable hardware is performed manu­

ally or by using automatic/semi-automatic tools. The partitioned computations have to

be compiled into executable code on the microprocessor and hardware configurations

on the reconfigurable hardware. The reconfigurable hardware needs to be configured

using the configuration information before the actual execution can be performed. This

configuration can be updated at run-time to execute a different set of computations from

the application.

Development of systematic scheduling and mapping techniques for computing ar­

chitectures require high level abstractions. Computing models, which are high level

abstractions of the architectures, can be utilized to develop algorithmic techniques for

mapping applications onto the architectures. Reconfigurable computing is different from

the von-Neumann paradigm of computing and requires computational models different

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

from conventional models. This gives rise to a design crisis in the tools for mapping ap­

plications onto reconfigurable architectures. Makimoto predicts this changing paradigm

in the wave illustrating technology trends in semiconductors (see Figure 1.2).

Standardized

Memory
M icroprocessor

Dynamic
Reconfiguration

Standard
Transistors

D io d es....
| 2007
year

1967 1977 19971987

Customized for
Calculator. TV.

Clock, etc..

Customized Logic

\ ASIC. A SSP

Custom ized

Figure 1.2: Makimoto’s wave

There are several application areas where reconfigurable computing has been shown

to achieve significant performance. These include long multiplication [76], cryptogra­

phy [30, 76], genetic algorithms [39, 70], image processing [3, 25], genomic database

search [46], signal processing [29, 58, 69]. The nature and diversity of the reconfig­

urable architectures results in a wide variety of implementation issues with respect to

applications.

This thesis addresses the basic issues involved in the design process for facilitating

reconfigurable computing. We identify fundamental challenges in developing a frame­

work for effective design and mapping techniques. A formal framework based on a

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

parameterized model of hybrid reconfigurable architectures is the focus of this thesis.

A formal approach is a critical requirement as accepted by many researchers, but ad­

dressed by very few. This thesis defines generic problems and presents solutions for

mapping application tasks onto reconfigurable architectures. A simulation methodol­

ogy for high level performance evaluation is also proposed and a prototype tool is illus­

trated. We list the basic contributions of the thesis and the thesis outline in the following

sections.

1.1 Thesis Contributions

This dissertation addresses several important issues in developing a formal framework

for mapping applications onto reconfigurable architectures. Our focus is on developing

algorithmic techniques that can enable automatic mapping tools including compilation

frameworks for current and future reconfigurable architectures. This thesis is one of

the earliest efforts to develop a parameterized model of reconfigurable architectures and

mapping techniques. The contributions of this thesis include:

1.1.1 Hybrid System Architecture Model (HySAM)

A high level model of reconfigurable hardware is needed to abstract the low level details.

Existing models supplied by the CAD tools have either multiple abstraction layers or are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

very device specific. We developed Hybrid System Architecture Model (HySAM), a pa­

rameterized model of a configurable computing system, which consists of configurable

logic attached to a traditional microprocessor. This model can be utilized for develop­

ing the actual mapping and scheduling of these tasks onto the configurable system. Our

model cleanly partitions the capabilities of the hardware from the implementations and

presents a very clean interface to the user.

1.1.2 Mapping Techniques

The main focus of this thesis is in developing mapping techniques that use the HySAM

model to map application tasks onto reconfigurable architectures. The mapping prob­

lems that we address focus on loops in application tasks which constitute a large fraction

of the execution time of most applications. The contributions of the thesis in this area

include:

• Defining a generic mapping problem based on the HySAM model that identifies

the architectural and application constraints and the optimization criteria. We ad­

dress the complexity of the problem by showing that this generic problem is NP-

complete.

• Developing polynomial time algorithms to address a subset of the application loops

which have linear dependencies between tasks. Our algorithmic techniques are

based on dynamic programming and result in optimal total execution times for

the loops.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• Developing algorithms for dynamic precision variation for loops on reconfigurable

architectures. Our work is the first in this research area to develop algorithmic

techniques to exploit dynamic reconfiguration to improve the performance of ap­

plications on reconfigurable architectures.

• Developing techniques to map computations onto high performance reconfigurable

pipelines to exploit architectural features of reconfigurable architectures. Heuris­

tic algorithms are developed to reduce the reconfiguration overheads in the pres­

ence of resource constraints.

• Developing techniques for parallelizing applications by using data context switch­

ing. Data context switching treats each execution of a repetetive computation as a

context. Instead of switching the configuration, the data on which the datapath is

operating on is changed every cycle dynamically. This technique can parallelize

loop computations that cannot be parallelized using existing techniques on con­

ventional architectures.

• Optimization techniques to simultaneously exploit multiple dimensions of recon­

figurable architectures. The thesis addresses the issues in developing mapping

techniques which exploit multiple aspects of the reconfigurable logic to deliver

superior performance compared to traditional techniques. Our techniques address

various application and architectural characteristics and resource limitations in

developing mapping techniques to optimize application performance.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1.1.3 Simulation Framework

As part of this thesis we proposed a novel interpretive simulation and visualization en­

vironment based on modeling and module level mapping approach. The Dynamically

Reconfigurable systems Interpretive simulation and Visualization Environment (DRIVE)

can be utilized as a vehicle to study the system and application design space and perfor­

mance analysis. Interpretive simulation measures the performance of the abstract appli­

cation tasks on the parameterized abstract system model. This is in contrast to simulat­

ing the exact behavior of the hardware by using HDL models of the hardware devices.

A prototype of the framework was developed in Java exploiting novel features of the

language.

1.2 Thesis Outline

Chapter 2 presents the background for the thesis. The evolution and the state of reconfig­

urable architectures are discussed in detail. The features of several architectural imple­

mentations are discussed to motivate the issues that need to be addressed in developing

mapping techniques.

Chapter 3 outlines the challenges in reconfigurable computing and our approach to

address some of the challenges. The paradigm shift from a fixed hardware to a recon­

figurable hardware gives rise to challenges in abstraction, algorithms and design tools.

We also introduce the basic definitions that are used throughout the thesis.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 4 describes some work by researchers and industry in addressing issues re­

lated to those in this thesis.

Chapter 5 describes in detail our Hybrid System Architecture Model (HyS AM). The

various components of the architecture and the abstraction of the architecture and the ap­

plication by the model parameters are explained in detail. This model is used inherently

in all the mapping techniques presented in the later chapters of this thesis.

Chapter 6 defines mapping problems and develops solutions for mapping applica­

tions onto reconfigurable architectures. Several variations of the mapping problems are

defined and their complexity is addressed in this chapter. The developed techniques are

used to illustrate how dynamic precision variation can be used to exploit reconfigurable

architectures.

Chapter 7 illustrates algorithmic techniques for mapping applications onto recon­

figurable pipelines by addressing several resource and application constraints that exist

in reconfigurable computing. This chapter focuses on developing high performance re­

configurable pipelined datapath to map applications onto reconfigurable architectures.

Chapter 8 describes in detail the motivations and our philosophy in developing the

interpretive simulation framework: Dynamically Reconfigurable systems Interpretive

simulation and Visualization Environment (DRIVE).

Chapter 9 discusses the conclusions from this dissertation work and addresses di­

rections for future research based on the evolution of reconfigurable architectures.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 2

Reconfigurable Computing

They always say that time changes things, but you actually have to change

them yourself.

- Andy Warhol

Reconfigurable architectures have evolved from Field Programmable Gate Arrays

(FPGAs). Currently, there are a large class of FPGAs available commercially. Vari­

ous computing systems have been constructed by integrating multiple FPGAs and ded­

icated memory. Some systems also couple a general purpose microprocessor or an ASIC

such as a Digital Signal Processor (DSP) to the FPGAs. To alleviate the communication

and memory access bottleneck for configuration and data, future systems are integrat­

ing configurable logic onto the same chip as a microprocessor. Such hybrid architectures

can distribute the computations between different components of the system. We give

a brief overview of the different classes of architectures in this chapter.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2.1 Classification

A large number of reconfigurable architectures have been developed over the years by

researchers and the industry. Reconfigurable architectures can be classified based on

several different parameters. In this section, we list some of the most distinguishing ar­

chitectural parameters which can be used to classify reconfigurable architectures. Ex­

amples of each type of architectures are discussed in detail in the following sections.

• Granularity

The granularity of the reconfigurable logic is the size of the smallest functional

unit that is addressed by the mapping tools. Typically FPGAs have smaller gran­

ularity such as 2-input and 4-input functional units. Several reconfigurable archi­

tectures such as Chameleon implement coarse grain arithmetic units of larger size

such as 32 bits.

Lower granularity provides more flexibility in adapting the hardware to the com­

putation structure. But, lower granularity has a performance penalty due to larger

delays when constructing computation modules of larger size using smaller func­

tional units. Some architectures implement features that are specifically targeted

towards reducing these overheads. For example, some FPGAs implement fast

carry chains to permit construction of larger arithmetic modules from small func­

tional units.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• Host Coupling

A large fraction of reconfigurable logic is utilized as a processing fabric attached

to a host processor. The host processor performs the control functions to configure

the logic, schedule data input and output, external interfacing, among other things.

The type of coupling to such a host system dictates the overheads in utilizing re­

configurable logic to speed-up computations. The degree of coupling affects the

reconfiguration and the data access costs.

The degree of coupling can be roughly partitioned into three classes:

— Loose System-level Coupling: This includes architectures which have recon­

figurable logic communicating to the host through an I/O interface similar

to a disk drive and other peripherals. A large number of initial FPGA based

boards were architected with this degree of coupling. Such architectures in­

clude

SPLASH [19],

- Loose Chip-level Coupling: These systems reduce the overheads in commu­

nicating to the host by using direct communication between the host and the

reconfigurable logic. An example of such an architecture is the PRISM [4].

A large number of existing embedded architectures with reconfigurable logic

are architected using this technique.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

- Tight On-chip Coupling: The availability of large number of transistors has

resulted in the integration of reconfigurable logic on the same chip as a host

processor, significantly reducing the communication overheads between dif­

ferent components of the architecture. Such architectures include Garp [41],

Chameleon [72], among others.

• Reconfiguration Methodology

Typically, a reconfigurable device is configured by downloading a sqeuence of

bits known as a bitstream onto the device. The speed and methodology of down­

load depend on the interface supported by the device. Two possible interfaces

are bit-serial and bit-parallel interface. The time for configuration is directly pro­

portional to the size of the bit-stream. Fine-grain and coarse-grain devices have

difference in the configuration time because coarse grain devices typically need

smaller configuration bitstreams.

The flexibility of reconfiguration is achieved at the cost of reconfiguration cost.

Reconfigurable logic has to stop computation for initiating a new configuration.

This reconfiguration time can be significant, especially for fine-grain multi-million

gate FPGAs. Some architectures support partial and dynamic reconfiguration [82].

Partial reconfiguration permits reconfiguration of the functionality of a portion the

device while the remaining portion retains its functionality. Dynamic reconfigu­

ration permits reconfiguration of a portion of the device while other portions of

the device are performing computations.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Some other architectures address this problem by utilizing mutliple contexts [67]

or a reconfiguration cache [41,72]. Both are similar in principle. Some configu­

rations of the device can be stored in buffers (possibly on-chip memory). At run­

time, it is less expensive to switch to one of the configurations in these memory

buffers compared with laoding a new configuration from external memory. The

organization of the cache varies among the architectures. Some architectures im­

plement the architecture as an external memory, whereas some architectures have

distributed context memories. For example, Chameleon [72] RCP has a cache

holding one configuration on-chip which permits single cycle reconfiguration.

• Memory Organization

The computation performed on the reconfigurable logic needs to access data from

memory. Intermediate results from computations also need to be stored before

the logic can be reconfigured to perform the next computation. The organization

of the memory affects the data access cost and is a significant fraction of the ac­

tual execution time. Currently, most reconfigurable architectures include large

memory on the reconfigurable logic device. This memory can be implemented

as large blocks of memory (Virtex BlockRAMs [83]) or as distributed memory

blocks (Chameleon LSMs [72]).

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2.2 Field Programmable Gate Array Systems

A Field Programmable Gate Array consists of an array of combinational logic blocks

overlaid with an interconnection network of wires (See Figure 2.1). Both the logic blocks

and the interconnection network are configurable. The configurability is achieved by

using either anti-fuse elements or SRAM memory bits to control the configurations of

transistors. Anti-fuse technology utilizes strong electric currents to create a connection

between two terminals and is typically less reprogrammable. SRAM based configura­

tion can be reprogrammed on the fly by downloading different configuration bits into

the SRAM memory cells.

Typical logic block architectures contain a look-up table, a flip-flop, additional com­

binational logic and SRAM memory cells to control the configuration of the logic block

(See Figure 2.1). The logic blocks at the periphery of the device also perform the I/O

operations. The interconnection network can be reconfigured by changing the connec­

tions between the logic blocks and the wires and by configuring the switch boxes which

connect different wires. The switch boxes for the interconnection network are also con­

trolled by SRAM memory cells. The functions computed in the logic block, the inter­

connection network and the I/O blocks can be configured using external data. FPGAs

typically permit unlimited reconfiguration. These versatile devices have been used to

build processors and coprocessors whose internal architecture as well as interconnec­

tions can be configured to match the needs of a given application. For a detailed archi­

tectural survey of FPGAs and related systems, see [18,40,65].

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Multi-FPGA Board

Memory Memory Memory Memory

t I v

FPGA FPGA FPGA FPGA

. 5,
Interconnect

Logic Block

4-LUT

Configuration SRAM

.v FPGA

Figure 2.1: Typical FPGA Board, Device and Logic block architecture

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3434038925^06162426781

www.manaraa.com

Current and future generation reconfigurable devices ameliorate the reconfiguration

cost by providing partial and dynamic reconfigurability [32,41, 67, 70, 83]. In partial

reconfiguration, it is possible to modify the configuration of a part of the device while

the configuration of the remaining part is retained. In dynamic reconfiguration devices

permit this partial reconfiguration even while other logic blocks are performing com­

putations. Devices in which multiple contexts of the configuration of a logic block can

be stored in the logic block and the context switched dynamically have also been pro­

posed [32,67].

Typically, the application requirements increase at a rate faster than the increase in

the size of logic resources on most FPGA devices. FPGA architectures also have lim­

its on the I/O capability due to the limitation on the number of I/O pins on the device.

To map large applications onto configurable logic, various systems have been designed

which have several FPGAs on a board. These architectures also provide local memory

and dedicated or programmable interconnect between the FPGAs. These board level

architectures are usually designed to function under an external controller or use one of

the on-board FPGAs as a controller. Examples of such systems include the experimen­

tal DECPeRLe board [76], SPLASH-2 [19] and Teramac [1] and the commercial WILD

series from Annapolis Microsystems [56]. Some software tools exist which can auto­

matically partition the design between multiple FPGAs on a board using higher level

abstractions [42]. For a detailed overview of FPGA devices and multi-FPGA architec­

tures see [40].

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2.2.1 SPLASH

SPLASH and SPLASH 2 [19], its successor, can be conceptually viewed as a system of

linear array of processing elements. This architecture makes SPLASH 2 a good candi­

date for systolic applications with limited neighbor-to-neighbor interconnect. Applica­

tions which are not linear systolic are possible by utilizing a crossbar interconnecting

the FPGAs. The system consists of a board with 16 Xilinx 4010 chips (plus one for

control) arranged in a linear systolic array and a crossbar switch which allows estab­

lishment of a limited number of non-linear communication channels. Each chip has a

36-bit connection to its two nearest neighbors. Each Xilinx 4010 is connected to a 512

KB memory(16-bit word size). Up to 16 boards can be daisy chained together to pro­

vide a large linear-systolic array of 256 elements. The whole system is connected to a

Sparc processor using the Sbus system bus interface. The Sparc processor acts as the

host and controls the initialization and configuration of the system.

SPLASH has been one of the extensively utilized system for developing applications

which have shown enormous speed-up over traditional microprocessors and even super­

computers. Though the application domain is usually restricted to systolic array style of

computation, there are several critical applications which satisfy this criteria. SPLASH

has been used for Image Processing, Motion Detection, DNA sequence matching among

others [19]. On DNA sequence matching SPLASH achieved over 300x the performance

of a Cray-II and over 200x performance of a 16K processor CM-2.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2.2.2 Xilinx 6200

The XC6200 FPGA [82] architecture from Xilinx is the first SRAM based FPGA archi­

tecture designed for implementing reconfigurable coprocessors. The XC6200 architec­

ture features a fine-grained cell structure, abundant routing, built-in processor interface

and supports fast partial reconfiguration.

The programmable logic of an XC6200 consists of large array of reconfigurable logic

cells each of which contains both programmable logic and routing resources. Each cell

contains a flip-flop and combinatorial logic capable of implementing any two-input func­

tion or any type of 2-to-l multiplexer. Cells are arranged in 4-by-4 blocks and 16-by-

16 tiles. The interconnection network consists of a hierarchy of programmable routing

wires. Each cell can be used for logic or memory functions. When cells are configured

as memory, each cell provides two bytes of ROM or RAM memory which can be ac­

cessed externally or internally.

The most important feature in the new XC6200 device is the FastMap interface, de­

signed to connect directly to an external processor’s system bus. The FastMap interface

places the whole FPGA into the processors address space. The processor can read and

write the logic and the configuration memory by using normal load and store. This par­

allel interface allows the entire configuration memory to be programmed in under 100

micro-seconds.

A random access feature allows arbitrary areas of the FPGA memory to be changed.

This provides a fast partial reconfiguration capability. This partial reconfiguration can

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

be performed without disturbing circuits running in other parts of the device. This fa­

cilitates sharing of hardware space by swapping in and out designs at runtime. A recon­

figurable hardware platform based on the XC6200 architecture has been designed and

is being offered as a commercial product by Virtual Computer Corporation [27].

2.2.3 NSCCLAy

The National Semiconductor CLAy [68] architecture is an SRAM based Configurable

Logic Array. CLAy was designed to support real-time algorithm and logic sharing by

using dynamic partial reconfiguration.

The logic cell layout is similar to existing FPGA devices, with a flip-flop and 5-input

lookup tables. The interconnection network is made up of nearest neighbor connections,

local and express bus wires. The full device can be configured in 640 micro-seconds.

Larger designs are supported by an integrated Field Configurable Multi-Chip Module

(FCMCM) which consists of a 2 x 2 array of CLAy devices.

CLAy supports partial reconfiguration by which a single cell’s functionality can be

changed. This is much faster than programming the complete device and reconfigura­

tion time is the order of I micro-second. This partial reconfiguration can be done with­

out functional interruption of the remaining parts of the device. These features of the

CLAy devices have been exploited in designing novel applications [80].

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2.2.4 Xilinx Virtex

Virtex is one of the latest in a series of high-performance FPGAs from Xilinx [83]. It has

different versions which have capacities ranging from 50 thousand to 1 million system

gates. Virtex architecture comprises of an array of Configurable Logic Blocks (CLBs),

encircled by programmable I/O blocks, and dedicated block memories of4096 bits each.

The is a hierarchical routing matrix with local routing and varying number of global

routes of different lengths. There are 24 single length routes, 96 routes of length six

and 12 long lines spanning the chip. There are additional I/O routing resources around

the periphery of the logic blocks.

The CLBs contain four logic cells each. Each logic cell has a 4-input function gen­

erator (Look Up Table - LUT), a flip-flop and some carry logic. The LUTs can operate

as function generators or they can be used as distributed RAMs. Additional multiplex­

ors and wires in a CLB provide flexible combination of different logic cell outputs and

routing of input signals to CLB output. High speed arithmetic is facilitated by providing

additional carry logic in each of the logic cells. A dedicated AND gate in each logic cell

improves multiplier implementations.

On-chip local memories can be realized on the Virtex architecture in two different

ways. The logic cells can be combined and configured as memory cells to obtain multi­

ported RAM of required sized. Each Virtex also has large Block SelectRAM memories.

These are organized along the two vertical edges of the FPGA. Each memory block is

four CLBs high and the number of such blocks is as much as 32 for large size Virtex

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Array
Clemen: CrossbarCrossbarCrossbar

SubArraySubArraySubArray

CrossbarCrossbarCrossbar

SubArraySubArraySubArray

CrossbarCrossbarCrossbar
LUT

| Memory SubArraySubArraySubArray

Array Element
CrossbarCrossbarCrossbar

Context Memory

Full DPGA 3x3 matrix of subarrays

Figure 2.2: DPGA architecture and composition

chips with 64 CLBs height. Each such memory cell is a fully synchronous dual-ported

4096-bit RAM with independent control signals for each port and independent data-

widths.

2.2.5 Dynamically Programmable Gate Array (DPGA)

Dynamically Programmable Gate Array (DPGA) is a multi-context, fine-grained com­

puting device [31]. DPGA consists of a matrix of computational cells with hierarchi­

cal interconnect. The basic computational unit is a 4-LUT (with optional flip-flop out­

put) similar to commercial FPGA architectures. Clusters of such units of size 4x4 are

grouped into sub-arrays. These sub-arrays are tiled to compose the arrays. Crossbars

between subarrays serve to route inter-subarray connections (see Figure 2.2).

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The important feature of the architecture is the multiple contexts for the configura­

tion of each cell. Small context memories local to each functional unit contain multiple

descriptions of the functionality of the unit. A 4x32 bit DRAM memory cell provides

four context configurations for both the LUT and the interconnection network. The lo­

cal interconnect switch is also controlled by such a context memory. A single, 2-bit,

global context identifier is distributed to all the array elements. A broadcast context

identifier selects the context to be executed (similar to an instruction) in each system

clock cycle. The control is centralized but the decentralized distribution of the context

memories permits various algorithm implementations.

2.3 Hybrid Architectures

Configurable platforms which have shown impressive results typically have configurable

logic attached to a host system through some interface such as the system bus or the

I/O channels. These systems have shown significant speedups for specific applications.

The limiting factor in this case in achieving higher performance on all applications is the

delay in communicating with the configurable logic. This delay results in higher data

transfer and reconfiguration overheads. Currently, systems try to alleviate this problem

by moving configurable logic to the processor die. We term these architectures as hybrid

architectures. There are various terms used for these architectures, including Systems-

on-Chip (SoC), Configurable System-on-Chip (CSoC), Reconfigurable Systems-on-Chip

(RSoC), Systems on Programmable Chip (SoPC), among others.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2.3.1 Convergence in Hybrid Architectures

We discuss the features of some of the hybrid architectures in the following sections.

These vary from conceptual research architectures to industrial implementations by start­

up companies. The list of architectures described below is not supposed to be exhaus­

tive, but just a sampling of the large space of hybrid architectures.

The methodology of implementing hybrid architectures has experienced a conver­

gence. There are several commercial devices which integrate programmable logic on

the same die as the processor [26, 72], FPGA vendors are also aggressively approach­

ing the same design space by providing customized processor and other IP cores on their

devices. These include the Platform FPGA initiative by Xilinx [84] with PowerPC cores

and the Altera Excalibur offering [61].

In this thesis, we consider hybrid architectures as the concept of a chip containing

multiple components as defined above and not the actual chip. Hence, an FPGA which

integrates multiple architectural components 1 is considered a hybrid architecture if the

chip has reconfigurable logic that is programmable by the end-user.

In the following sections, we outline several hybrid architectures and illustrate their

key features. These architectures illustrate large variation in the implementation ap­

proach. For example, Xilinx Platform FPGA integrates an embedded PowerPC pro­

cessor as a hard core on a fine-grain Virtex-II FPGA. On the other end of the spectrum,

Conventional processor or DSP cores, embedded memory, and peripheral interfaces

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chameleon Systems Reconfigurable Communications Processor (RCP) is a hybrid ar­

chitecture with an ARC 32-bit processor integrated with proprietary coarse-grain Re­

configurable Processing Fabric (RPF) on the same chip.

2.3.2 OneChip

OneChip illustrates an architecture with a very tight integration of reconfigurable logic

with a traditional microprocessor core. Programmable logic called Programmable Func­

tional Units (PFUs) were co-located with Basic Functional Units (BFUs) in a MIPS mi­

croprocessor core. The execute stage of the microprocessor was thus enhanced with

reconfigurable logic.

The basic advantage of OneChip is the high data bandwidth that is shared by the PFU

and the BFU. A similar approach was earlier suggested by the PRISC project [64]. The

PFUs are associated with dedicated configuration memories located close to the PFUs

to facilitate fast operation. The interconnection network is similar to hierarchical inter­

connect found in Xilinx FPGAs. The chip can execute typical MIPS applications with

binary compatibility by not exploiting the configurability. Pre-compiled configurations

of the PFUs can be stored in the configurations and can be dynamically switched to per­

form specific application tasks.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2.3.3 Berkeley Garp

The Berkeley Garp architecture combines configurable logic with a standard MIPS pro­

cessor on the same chip [41]. The configurable array is composed of a matrix of logic

blocks which are organized into 32 rows of 24 blocks. One block in each row is a control

block and the remaining are logic blocks which can implement a 2-bit operation. Four

memory buses run vertically through the rows for moving information into and out of

the array. They can be used for data transfer and memory accesses. A separate wire net­

work provides interconnection between the logic blocks. The loading and execution of

the configurations is under the control of the main processor. A transparent integrated

configuration cache holds the equivalent of 128 total rows of configurations(as 4 cached

configurations for each row). Reconfiguration from this cache takes 4 cycles irrespec­

tive of the number of rows. The operation of the reconfigurable array is carried out by

using some extended instructions to the MIPS instruction set. The reconfigurable array,

however, can perform data cache or memory accesses independent of the MIPS core.

2.3.4 National Adaptive Processing Architecture (NAPA)

National Adaptive Processor Architecture (NAPA) is part of the Adaptive System on

a Chip (ASC) series which is aimed at providing a integrated hardwired standard and

application specific “softwired” programmable functional blocks [66]. It is targeted to­

wards DSP applications, Imaging, Feature Extraction problems, Encryption/Decryption

etc.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

NAPA 1000 is a high performance, low power Adaptive Processing Architecture

from National Semiconductor. The device consists of a 32 bit RISC processor core and

a 50K gate Adaptive Logic Processor(ALP). It also consists of a multiple processor bus

interface and 16K bytes of data memory and 256 byte scratch-pad memory for the ALP.

The microprocessor is a custom Compact RISC processor. The ALP consists of a

homogeneous array of 96x64 core cells. Each cell can implement up to a three input

logic function with up to two outputs. The interconnection network is hierarchical with

nearest neighbor connections and chip wide switched bus network. The ALP is provided

with a pair of memory banks of 8K each and 8 scratch-pad memories of 256 bytes for

distributed local storage.

The application development environment on NSC NAPA is targeted towards pro­

viding a C/C++ based transparent interface. The adaptive logic is integrated as func­

tional building blocks which will be integrated as a layer between the C compiler and

the low level object code. ALP generators for common functions are intended to provide

high performance and utility. A Reconfigurable Pipeline Instruction Set(RPIS) coordi­

nates the interaction between the RISC and the ALP components.

2.3.5 Xilinx Platform FPGA

Xilinx Platform FPGA is an evolution from high capacity Virtex series FPGAs. Fu­

ture generations of these FPGAs will integrate embedded processors, DSP functions and

high speed communication interfaces.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The integration of hard and soft intellectual property (IP) cores permits hardware

upgrades on the fly. The enabling technology for Platform FPGAs is the Virtex-II ar­

chitecture. It is expected to scale up to 10 million system gates with internal system

clocks up to 200 MHz. Virtex-II is also expected to have higher capacity configurable

logic blocks and larger size block RAM and distributed RAM. The memory block sizes

are increased to provide a higher memory-to-logic ratio and facilitate memory rich and

data intensive application.

As a hybrid reconfigurable architecture, Platform FPGA is expected to integrate sev­

eral hard cores in addition to the available soft cores. Soft cores are intellectual prop­

erty provided by Xilinx and other developers as modules that can be integrated and

compiled onto the FPGA by using EDA tools. Virtex-II has / P Im m ersion™ and

Active InterconnectTXI technologies that facilitate easy integration of the soft cores

into designs. Platform FPGA also supports high bandwidth serial and parallel interfaces

supporting several industry standards.

Xilinx has announced that an embedded PowerPC 405 microprocessor core from

IBM will be available as a hard core on the Platform FPGA. The PowerPC core is ex­

pected to operate at 300 MHz and communicate with the reconfigurable logic at more

than 6 GB/sec. Platform FPGA also integrates multiple 18-bit multipliers onto the Virtex-

II platform to enable theoretical performance of up to 600 billion MAC (multiply accu­

mulates per second).

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The ability of the Platform FPGA to integrate multiple aspects of different architec­

ture paradigms onto the Virtex-II FPGA provides a flexible platform for design devel­

opment. Platform FPGA design tools combine aspects of embedded processor compila­

tion, electronic design automation (EDA), real time operating systems (RTOS), digital

signal processing (DSP), among others.

2.3.6 Triscend

Triscend corporation’s first configurable system-on-a-chip E5 architecture integrates a

8032 8-bit microcontroller, on-chip programmable logic, RAM and I/Os on a chip [26].

The E5 is targeted towards embedded systems and promises fast development and high

level of customization. The 8032 microcontroller is a “turbo” version that runs at 40MHz.

The programmable logic consists of 3,200 Configurable System Logic (CSL) cells. There

is up to 64KByte of on-chip, dedicated system RAM.

The A7 Configurable System-on-Chip family consists of four devices that share the

same architecture. All members of the A7 family feature the ARM7TDMI processor

core rated at up to 60MHz, 8Kbytesof mixed instruction/data cache, a high-performance

dedicated internal bus, and an external memory interface unit that supports Flash, EEP-

ROM, SRAM and SDRAM. Each device in the family also includes 16Kbytes of Scratch­

pad SRAM that can be used as regular internal RAM or as a trace buffer during debug.

The A7 also includes four independent DMA channels for memory-to-memory trans­

fers, linked-list DMA, and frame transfer support.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

To external memory

Memory
Interface

Unit
(SDRAM etc.)

Clock Synthesizer

Power Control

Configurable!
System J

Logic (CSL)|

PIO
BankPower-On Reset

16KB
Scratchpad

SRAMARM7TDMI
a.

'SI
s i

CSI Bridge *a8KB Cache Peripherals
2 Timers
2 UART
Interrupt Control
Watchdog Timer

H/W Breakpoint Unit

Four Channel
DMA Controller

CSI
Bus

Arbiter

JTAG Interface J->

Figure 2.3: Triscend A7 CSoC architecture block diagram

The devices in the A7 CSoC family vary by the amount of Configurable System

Logic (CSL) cells, which range from 512 to 3,200 cells or approximately 40,000 logic

gates. The devices also offer between 123 and 315 programmable I/Os depending on

the size. A block diagram of the Triscend chip with some of the major components is

shown in Figure 2.3.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

32-bit PCI bus 64-bit memory bus

RoadRunner Bus

Reconfigurable Processing Fabric

160-pin Programmable I/O

Figure 2.4: Chameleon Reconfigurable Communications Processor (RCP) Architecture

2.3.7 Chameleon Systems RCP

Chameleon Systems has designed the industry’s first Reconfigurable Communications

Processor (RCP). It is a high performance reconfigurable system on a chip optimized

for compute intensive signal processing tasks found in communications, VoIP, software

defined radio (SDR), protocol processing, among others. The architecture and the soft­

ware mapping tools are briefly described in the following sections.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chameleon Architecture

The Chameleon Reconfigurable Communications Processor (RCP) architecture consists

of a 32-bit embedded processor core, 32-bit reconfigurable processing fabric, a high­

speed system bus, and a programmable I/O system. The processor can interface to mem­

ory and other processing systems through a PCI-controllerand memory/DMA controllers

in addition to the programmable I/O. The different components are linked by a 128-bit,

split transaction, high performance RoadRunner bus, which provides 2GByte/sec on-

chip communication bandwidth. An overview of the architecture is given in Figure 2.4.

The different components in the Chameleon architecture are briefly described be­

low:

Embedded Processor. The RCP has a 32-bit ARC processor that delivers 120 MIPS at

125 MHz. The processor has a four-stage pipeline, 64 general purpose 32-bit registers

and large set of instructions. The memory interface in the processor has a 4Kbyte in­

struction cache and a 4 KByte data cache.

Reconfigurable Processing Fabric: The reconfigurable processing fabric is divided into

Slices with various versions of the family supporting different number of slices. Each

slice consists of three tiles and can be independently reconfigured. A tile consists of

32-bit datapath units (DPUs), 16x24-bit multipliers, local store memories (LSMs) and

control logic unit (CLU). A block diagram of the tile is shown in Figure 2.5. A 32-

bit DPU implements most standard arithmetic operations and several specialized op­

erations. There are several registers in the datapath to support efficient pipelining of

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Slice 0 Slice 2Slice 1 Slice 3

Tile A Tile A Tile ATile A

Tile B
32-bit DPU

32-bit PPU

32-bit DPU

32-bit DPU

32-bit DPU

32-bit DPU

32-bit DPU

16x24 * H l 6 x 2 4 *

Local Store
Memory

Control

Logic

Unit

Local Store
MemoryTileC

Local Store
Memory

Local Store
Memory

Figure 2.5: Reconfigurable Processing Fabric (RPF)

computations. Each tile has four 32-bit wide by 128 word deep Local Store Memories

(LSMs). The LSMs are multi-ported allowing simultaneous read and write operations.

The Control Logic Unit (CLU) can store eight user specified instructions for each of the

seven DPUs in the Tile where each instruction represents a complete DPU configura­

tion.

Dynamic Interconnect: The datapath is overlaid with a rich interconnect architecture

which is deterministic and provides 100% routability. Dynamic interconnect includes

three types of routes: local routes, intra-slice routes and inter-slice routes. Local routes

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

connect 8 DPUs on either side of any DPU with a delay of one clock cycle. Intra-slice

routes connect all DPUs within a slice with a delay of one clock cycle. Inter-slice routes

connect DPUs in different slices with a delay of two clock cycles.

Embedded Computing Subsystem: In addition to the main processing units, the Chameleon

architecture has several components to interface to external systems. RCP has a pro­

grammable I/O bank of 160 pins providing an aggregate bandwidth of 2 GByte/sec. The

PIO bank can be interfaced to external components such as A/D, D/A, FPGAs, SRAM

memory and other sensors. A 32-bit PCI controller supporting Master/Slave operation

provides an interface solution to a PCI bus. A 64-bit memory controller can interface to

external SDRAM and can support 1 GByte/sec transferrate. A 16 channel DMA sub­

system can transfer data between the various modules on the chip and the LSMs.

Chameleon Reconfiguration Potential

Each DPU is associated with a control logic unit that can store 8 different instruction

words. The instruction words dictate the configuration of the DPU including the con­

trol signals associated with various DPU components such as registers and multiplexers.

The configuration to be executed can be determined based on control state machine and

datapath intermediate results. This facilitates on-the-fly execution of a different config­

uration every cycle from among the 8 possible configurations.

The Configuration subsystem consists of a controller and a background configura­

tion buffer. Configuration information can be transferred from off-chip memory into the

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

background configuration plane while the active configuration is performing computa­

tions at peak performance. RCP can switch from active to background configuration in

just one clock cycle (few nanoseconds) facilitating a single cycle context switch. This is

in contrast to reconfigurations times of the order of few milliseconds for most FPGAs.

Chameleon Software Environment

The Chameleon Systems Integrated Development Environment (C SIDE) is a complete

toolkit for designing, debugging and verifying RCP designs. Figure 2.6 gives an overview

of the development flow using the RCP. C code is compiled using an optimized GNU C

compiler for the ARC processor and Verilog code is synthesized for the Reconfigurable

Processing Fabric. The two streams are linked together for execution on the RCP. Chip-

Sim, a complete cycle-accurate simulator for the complete chip, has a standard GDB

interface for debugging. The Chameleon PCI development board provides a PCI bus or

JTAG interface to debug and verify designs on the RCP hardware.

The Chameleon eConfigurable Basic I/O Services (eBIOS) provides a seamless in­

terface between the embedded processor system and the fabric. eBIOS provides re­

source allocation, configuration management and DMA services. The software tools

can generate eBIOS calls automatically or they can be specified by the user for precise

orchestration of the execution.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

eBIOS

ChipSim

^ C Source C o d e ^

1►

C Compiler

'

ARC Ob

i

ject Code 1

•

Linker ,

^Cham eleon EXE

Debugger

Verilog Soi

'

irce Cod^j

’

Synthesis

Layout

Development Board

Figure 2.6: Chameleon software tool flow

Library

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 3

Approach

Challenges can be stepping stones or stumbling blocks.

It is just a matter o f how you view them.

- Unknown

Several research and commercial efforts in configurable computing concentrated on

designing new configurable architectures and developing design tools and applications

for these architectures. These efforts are specific to the respective architectures and

there is a lack of developmental effort in designing a uniform framework for mapping

applications onto configurable architectures. Our approach is to develop a framework

which will facilitate mapping and provide an algorithmic foundation for automatic map­

ping.

The problem of mapping of tasks to configurable architectures is different from map­

ping to traditional fixed architectures. Configurable architectures have a variable and

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

adaptive target which can be chosen at runtime to suit the computation unlike fixed ar­

chitectures. Traditional mapping techniques assume a given fixed target and try to opti­

mally map an application(set of tasks) to minimize execution time and other overheads

such as communication and data reorganization. In configurable computing the recon­

figuration costs are not costs associated with the tasks but rather with the target archi­

tecture.

3.1 Challenges

Mapping applications onto configurable architectures requires utilization of the dynamic

reconfiguration potential available. Tools and techniques which have been designed for

static architectures cannot realize this potential. Traditional CAD tools concentrate on

reducing the timing delays and other overheads in mapping a task onto a configurable

architecture. They do not consider the issues in reconfiguring the architecture for each

task and the new overheads incurred in doing the reconfiguration. We outline below the

challenges in developing the tools and techniques for utilizing reconfigurable architec­

tures.

3.1.1 Static vs. Dynamic Reconfiguration

UtilizingFPGAs for speeding-up applications has been mostly limited to developing

configurations which optimize the computation time for a given task. The optimized

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Configure
Logic

Execute
Design

Configurations

Figure 3.1: Static configurable computing

configuration is then used to execute the task. This process is illustrated in Figure 3.1.

A given computational task is analyzed and an optimized configuration is developed for

that computational task. The configurable logic device is then configured, usually under

the control of the host, with this optimized configuration. Finally the configuration is

executed by initiating the computation and communicating the data to the device. The

programmability of the device is not exploited and the logic resources are not reused

during a computation.

Configure
Logic

Execute
Design

Configurations

Figure 3.2: Dynamic configurable computing

The conventional approach is static, because the hardware is configured just once,

followed by execution. The concept of dynamic configurable computing is illustrated

in Figure 3.2. The configurable resources are reused by reconfiguring the hardware af­

ter a computation is completed. The configuration of the logic and the interconnec­

tion network are adapted on the fly during the execution. The run-time reconfiguration

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

can be based on intermediate results generated by the computations. This approach has

enormous opportunities to achieve higher performance than conventional approach by

closely adapting the hardware to the nature of the computation.

3.1.2 Design Methodologies

To achieve high performance using configurable architectures, effective configuration

design techniques need to be developed. Existing design methodologies are based on

ASIC design tools and fail to realize the full potential of configurable logic. These logic

synthesis tools are geared towards compiling a hardware oblivious algorithm. The be­

havioral description of the algorithm is mapped to logic using synthesis tools in several

phases. In this process, the structure of the algorithm is not utilized resulting in sub-

optimal designs with respect to area and delay performance. Also, this design method­

ology does not incorporate the input data knowledge into the configuration. Algorithm

specific and instance-aware configurations are the key to achieving large speed-ups on

configurable architectures.

Current design compilation times are too long and preclude any run-time, dynamic

modification of the configurations. Existing designs also lack modularity and scalabil­

ity and have low performance (e.g. clock rates) unless optimized by hand. One major

problem in using reconfigurable logic to speed-up a computation is the design process.

The “standard CAD approach” used for digital design is typically employed (see Fig­

ure 3.3). The required functionality is specified at a high level of abstraction via an HDL

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

VHDL
! Verilog

T
| High-level
| Synthesis

j I
| RT/gate-level
| Network

! ~ T ~
| Analysis I ,O K
i (Area/Timing) I— '-------

Library o f

Modules

Figure 3.3: Traditional Design Synthesis Approach

I

-------► Logic I
Synthesis |

| Netlist (device specific)

Layout I
Placement/Routing I

Technology

Independent

Technology

Dependent

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

or a schematic. Logic libraries specific to a given device (e.g. Xilinx FPGA, Altera

FPGA, Chameleon Component Library etc.) and time consuming placement and rout­

ing steps are required to perform the logic mapping. This approach of logic synthesis as

opposed to algorithm synthesis allows the user to specify the design using a behavioral

model. But this abstraction is achieved at the expense of performance. The semantics

and nature of the algorithm are lost in the mapping phases.

3.1.3 Multi-dimensional Optimization

Configurable architectures possess multi-dimensional characteristics which are more di­

verse than systems based on microprocessors, digital signal processors and other inte­

grated multi-component architectures. The constraint space that dictates the optimiza­

tion process is illustrated in Figure 3.4. In addition to the traditional two-dimensional

space of architecural and application constraints, reconfigurable architectures also have

dynamic adaptation constraints.

Application constraints deal with the type of applications tasks and the dependency

among the tasks. As we describe in later chapters, for loop computations these con­

straints include the strcuture of loops, dependencies inside the loop and loop carried

dependencies. Architectural constraints include the granularity of the functional units,

the structure of the functional units, the performance characteristics, among others. In

reconfigurable architectures, the additional factor of adaptation constraints affects the

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Application
^Constraints

Conventional
Optimization Space

Architecture
Constraints

Adaptation
Constraints

Figure 3.4: Constraint space of optimization in reconfigurable architectures

optimization process. The method of reconfiguration, partial reconfiguration, reconfig­

uration caches, reconfiguration overheads, etc. need to be incorporated into the opti­

mization process. The algorithmic mapping techniques that are developed have to in­

clude the variables and costs for these multiple dimensions.

These characteristics of configurable architectures need to be exploited to achieve

high performance. The multi-dimensional characteristics of reconfigurable architectures

is illustrated in Figure 3.5. When reconfigurable logic is integrated with other comput­

ing architectures in hybrid systems, it also gives rise to further complexities due to such

integration. Multiple dimensions of the problem and architecture space need to be con­

sidered for optimizing the performance of the applications on hybrid reconfigurable sys­

tems. These include:

• Fine-grain and coarse-grain parallelization

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Parallelism and
Pipelining

Conventional SOC
Space

Embedded^
Memory

Reconfigurable
Datapath

Figure 3.5: Multi-dimensional configurable architecture characteristics

• Customized application specific configurations

• Reconfiguration of the hardware

• Larger space of cost variables - reconfiguration cost, data communication cost

• Non-traditional memory organization and access

3.1.4 Design Tools

Complex systems on a chip have evolved due to various technological, application, and

market forces. The design methodologies are being developed as a reaction to the evo­

lution of the hybrid architectures. Design tools are being developed after the evolution

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

of the hybrid architectures and have not co-evolved with the architectures. Current de­

sign processes1 are based on independent design flow for each architectural component.

The programming models and the design tools for each of the individual components are

utilized to map an application. The integration is performed at a much later stage. A

standard interface between different components of the hybrid architecture is the only

integration that exists during the design phase. An example design tool flow is illus­

trated in Figure 3.6. The independent development of C and HDL code is compiled,

synthesized and linked only late in the compilation phase. The development activities

for each aspect are separate and are based on a fixed application programmer interface

(API).

The different characteristics of reconfigurable logic are outlined in Figure 3.5. These

characteristics are utilized independently either in different stages or by using semi­

automatic design tools. For example, register balancing is a technique used to pipeline

designs. A design can be implemented as a combinatorial circuit without regard to pipelin­

ing. Synthesis tools can be used to automatically generate a balanced pipelined design

by inserting registers in all the datapaths leading to the output.

The development of designs using such ad-hoc techniques results in sub-optimal de­

signs. Also, the integration of multiple design methodologies and mapping techniques

involves significant effort by the application designer. An integrated methodology is re­

quired that simultaneously exploits multiple aspects of hybrid architecture. Design tools

1 by design processes, methodologies and tools we refer to the aspects of developing applications using
a hybrid architectures and not designing the chip.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

eBIOS

ChipSim

C Source Code

’

C Compiler

(verilog Source C od^-

ARC Object Code

Linker

^Cham eleon E X E ^

Debugger

Synthesis

Layout

Development Board

Figure 3.6: Chameleon design tools flow

Library

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

that facilitate such a process can be developed only by developing mapping techniques

that focus simultaneously on multiple aspects of the hybrid architecture characteristics.

3.2 Approach

Traditional high level tools such as compilers for microprocessors or parallel processors

are also not suitable for mapping applications. Compilers map an application(program)

by targeting to a fixed machine architecture. They do not take into account the dynamic

behavior of reconfigurable architectures. Static analysis of the task computation is not

enough to perform optimal mapping to reconfigurable architectures. We will develop

algorithmic techniques which will enhance such a compiler framework by analyzing

the issues in dynamic behavior of the architecture.

In this thesis we address the reconfigurable computing issues and challenges dis­

cussed earlier by developing a model and algorithmic framework for mapping appli­

cations onto reconfigurable architectures. The techniques developed are evaluated an

example architectures and simulated using a simulator, DRIVE (see Chapter 8), devel­

oped as part of the thesis.

The Hybrid System Architecture Model (HySAM) that we developed is discussed

in detail in Chapter 5. HySAM is a parameterized model of a reconfigurable computing

system, which consists of reconfigurable logic attached to a traditional microprocessor.

This model is utilized for analyzing application tasks and developing the mapping and

scheduling of these tasks onto the reconfigurable system.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The absence of mature design tools impacts the simulation environments that exist

for studying reconfigurable systems and the benefits that they offer. Simulation tools are

a very important component of the design cycle. Simulations provide users with prac­

tical feedback when developing applications and designing systems. This allows the

designer to determine the correctness and performance of a design before the system is

actually constructed. The user can explore the merits of alternative designs without ac­

tually building the systems. Simulation tools provide a means to explore the architecture

and the design space in real time at a very low resource and time cost.

As part of this thesis, we have developed a simulation framework - Dynamically

Reconfigurable systems Interpretive simulation and Visualization Environment (DRIVE)

DRIVE can be utilized as a vehicle to study the system and application design space

and performance analysis. Reconfigurable hardware is characterized by using a high

level parameterized model. Applications are analyzed to develop an abstract application

task model. Interpretive simulation measures the performance of the abstract applica­

tion tasks on the parameterized abstract system model. This is in contrast to simulating

the exact behavior of the hardware by using HDL models of the hardware devices.

The application tasks that we consider in this thesis are LOOP computations. It is

a well known rule of thumb that 90% of the execution time of a program is spent in

10% of the code. This code usually consists of repeated executions of the same set of

instructions. The typical LOOP constructs used for specifying iterative computations in

various programming languages are DO, FOR and WHILE, among others.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Computations which operate on a large set of data using the same set of operations

are most likely to benefit from configurable computing. Hence, loop structures will be

the most likely candidates for performance improvement using configurable logic. Con­

figurations which execute each task can be generated for the operations in a loop. Since

each operation is executed on a dedicated hardware configuration, the execution time

for the task is expected to be lower than that in software.

The algorithmic techniques developed in the remainder of this thesis address the dif­

ferent aspects of the mapping challenges outlined in Chapter 3.1. The structure of the

applications tasks as dictated by the dependencies in loop computations and the charac­

teristics of the hardware as captured by our HySAM model are addressed in the mapping

problems. We address the space of these dependencies and characteristics by defining

several mapping problems and developing algorithms to solve the mapping problems.

3.2.1 Model based Reconfigurable Computing

A model of the hardware that abstracts the hardware without sacrificing the core features

of the hardware can significantly aid in the mapping process (see Figure 3.7). An ex­

ample of a model that permits application mapping and analysis is the Reconfigurable

Mesh model [10, 16]. The model based mapping environment takes into account the

capabilities and limitations of current as well as projected hardware technologies. Pa­

rameterized models for algorithm design and analysis will possess the following char­

acteristics:

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Applications

Algorithms

Parameters Scheduling

Models

Abstraction Mapping

Architectures

Figure 3.7: Model-based Approach

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• Cost models for analysis of reconfigurable architectures.

• Techniques for partitioning and placement of designs exploiting algorithm and

input structure.

• Cost analysis incorporating the cost of reconfiguration and partial and dynamic

reconfigurability.

• Impact of off-chip communication in designing reconfigurable computing solu­

tions.

• Tradeoffs between reconfigurability and redundancy of hardware.

The HySAM model developed as part of this thesis is described in detail in Chap­

ter 5.

3.2.2 Loop Computations

There are various methods of exploiting the locality in execution present in loops. In­

struction caches utilize the spatial locality to improve memory performance by keep­

ing the most frequently accessed instructions in a faster memory. Loop parallelization

techniques rely on utilizing the parallelism in independent iterations by executing differ­

ent iterations of the same loop on multiple functional units at the same time [81]. Soft­

ware pipelining techniques are utilized to exploit pipelining at the architectural level by

pipelining the successive iterations of a loop construct.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The loop statements which can be executed on configurable logic should be well

behaved. The characteristics of well behaved loops are described below:

• Constant step size for the index

• No function calls in loop body

• No pointer operations or arithmetic

• Statically computable memory accesses

Though not all loop constructs satisfy these constructs, most commonly occurring

loops, including those in benchmark programs, satisfy these constraints. Loop transfor­

mation techniques [81] can be utilized to convert arbitrary loops to conform to the above

constraints. The operations in a loop can be executed by setting up a specific configu­

ration for each of the operations. Each of the operations in the loop statement might be

a simple operation such as an addition of two integers or can be a more complex oper­

ation such as a square root of a floating point number. The problems and solutions that

we present are independent of the complexity of the operation.

Loop computations provide opportunity for parallelizing the computations on re­

configurable architectures. Reconfigurable architectures have a large number of func­

tional units which can be utilized for concurrent computations (parallel or pipelined).

Pipelined functional units support high clock frequency and hence high performance.

The rich dynamic interconnection network provides enough data bandwidth for parallel

and pipelined computations. We first introduce some definitions used in the remainder

of the thesis.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3.2.3 Definitions

Loop: A set of statements {S i, S2, . . ■, 5P} executed repeatedly for N times. The num­

ber of statements in the loop is p and the set of statements is referred to as the loop body.

Iteration: One specific execution of the loop body is called an iteration. The statements

are superscripted with the iteration number to indicate a specific iteration. For example,

execution of a statement 5, in the jth iteration is indicated as S- (1 <i<p and 1 <j < N).

Nested Loop: Nested loop is a general case in which a loop can contain other loops in

the loop body. For a A>level nested loop, a specific execution of a statement 5, is indi­

cated by superscripting 5, with a vector of size k as 5-‘ ’j2 Jk (1 <i<P and L</r< A'V)-

Nr denotes the number of iterations of the rth loop. The vector indicates the specific

iteration of each of the nested loops from the outermost to the innermost loop. A state­

ment executed independent of a specific loop is indicated by a V in that position in the

vector.

Data Dependency: If a value computed by a statement Sj is used by another statement

Si, then Si is said to be data dependent on Sj and is indicated as 5, -< Sj. All depen­

dencies discussed in the remainder of the thesis are data dependencies unless explicitly

mentioned otherwise. Dependencies can be illustrated by a dependency graph which

has statements as nodes and dependencies as directed edges.

Transitive Dependency: The dependency relation defined above satisfies the transitive

property:

Si -< Sj and Sj -< S t => Si -< Sk-

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Loop-carried Dependency: If a statement executed in one iteration is data dependent

on the statement executed in another iteration then the dependency is classified as a

loop-carried dependency. Loop-carried dependency indicates a cycle in the dependency

graph: S f -< S- and a ^ b.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 4

Related Work

I f I have seen farther, it is by standing on the shoulders o f giants.

- Isaac Newton

The following topics outline the different aspects of reconfigurable computing that

research has been addressing in the past several years:

• Architectures [8, 20, 26, 34,41, 44,72,77]: Device and system architectures are

being developed which propose various ways of organizing and interfacing con­

figurable logic. Some architectures are also based on coarse grain functional units

that are configured on the fly to execute an operation from a given set of opera­

tions. Commercial architectures are exploring integration of reconfigurable logic

and microprocessors on the same chip.

• Applications [3, 23, 29, 60, 63, 69, 85]: Specialized configurable architectures

which are utilized for speeding up specific applications are replacing some ASICs.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Some applications also exploit optimization based on a specific input instance of

the computation.

• Algorithmic Synthesis [5 ,11,15, 19,21,22,28,44,45,50,53,59,62,71,76,78,

80]: Dynamically reconfigurable architectures give rise to new classes of prob­

lems in mapping computations onto the architectures. New algorithmic techniques

are needed to schedule the computations. Existing algorithmic mapping techniques

focus primarily on loops in general purpose programs. Loop structures provide

repetitive computations, scope for pipelining and parallelization and are candi­

dates for mapping to reconfigurable hardware. We describe briefly some of the

algorithm synthesis research in this chapter.

• Software Tools [7, 9, 12, 33, 37, 44,47, 51]: Current software tools still rely on

CAD based mapping techniques. But, there are several tools being developed to

address run-time reconfiguration, compilation from high level languages such as

C, simulation of dynamically reconfigurable logic in software and complete op­

erating system for dynamically reconfigurable platforms.

There is a significant lack of research in development of models of reconfigurable ar­

chitectures that can be utilized for developing a formal framework for mapping applica­

tions. The Reconfigurable Mesh model was the earliest theoretical model that addressed

dynamic reconfiguration in computation and communication structure [10]. However,

Reconfigurable Mesh model is more theoretical and hardware implementations have

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

only been able to approximate the delay and speed assumptions in the model. Our HySAM

model is a more realistic computation and compilation model that facilitates develop­

ment of algorithmic mapping techniques.

There have been several research efforts that focused on developing architectures

and the associated software tools for mapping onto their specific architecture. Some of

these projects have addressed generic mapping techniques that can be extended to a class

of reconfigurable architectures. Such projects include the Berkeley Garp [75, 21, 41],

National Semiconductor NAPA [36,66], Xputer [44], Northwestern MATCH [6], MIT

RAW [77], CMU PipeRench [38], DEC PeRLe [76], SPLASH [19].

The Garp and NAPA projects address some of the issues in mapping loops onto re­

configurable architectures. However, they are heavily based on loop analysis and do not

develop a model-based mapping framework. Our algorithmic techniques also exploit

loop analysis performed in conventional compilation and parallel compilation areas and

use the HySAM model for developing optimal mappings. Hartenstein et. al. developed

the Xputer paradigm and an operating system for machines based on the paradigm [44],

CoDe-X takes as input a C like application program and compiles and executes on Xputer

hardware. The framework does the partitioning, compiling and library mapping of the

application tasks. Data scheduling to improve performance is also addressed. Time

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Multiplexed FPGA [74] stores multiple FPGA contexts in SRAM cells. This architec­

ture can potentially switch between configurations in about 30 ns. The mapping tech­

niques that we develop can exploit such an architecture by minimizing the reconfigura­

tion overhead.

Customizing configurable hardware to suit the computations has been acknowledged

as the most significant advantage of such architectures. Some researchers have adapted

the hardware to perform computations with exactly the required precision for the com­

putations [69,73]. Such static approaches do not exploit the ability of configurable hard­

ware to be adapted to the exact required precision as the computations progress. The

maximum possible precision of variables which is determined in the static approach can

still involve execution with superfluous precision and unnecessary overheads. Several

efforts have also focused on developing parameterized libraries and components, pre­

cision being one of the parameters. Most FPGA device vendors provide such highly

optimized parameterized libraries for their architectures. Efforts have also been made

to generate such modules using high level descriptions [24, 55].

Pipelined designs have been studied by several researchers in the configurable com­

puting domain. The concept of virtual pipelines and their mapping onto physical pipelines

has also been analyzed. Cadambi et. al. address some of the issues in mapping virtual

pipelines onto a physical pipeline by using incremental reconfiguration in the context of

PipeRench [20]. Their work addresses the issues in controlling the movement of con­

figuration data and computation data.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Luk et. al. describe pipeline morphing and virtual pipelines as an idea to reduce

the reconfiguration costs [50]. A pipeline configuration is morphed into another con­

figuration by incrementally reconfiguring stage by stage while computations are being

performed in the remaining stages. Virtual pipelines are mapped onto physical pipelines

by morphing between pipeline stages. But, morphing is limited to architectures which

support fast reconfiguration of the order of a single pipeline stage execution. We con­

sider the case when the pipeline reconfiguration cost is significant. The problem that

we are addressing in this thesis is to generate distinct pipeline phases between which

the reconfiguration cost is reduced.

Weinhardt describes the generation of pipelined circuits from parallel-FOR loops

in high level programming language [78]. Weinhardt et. al. also developed pipeline

vectorization techniques [79]. The loop candidates which are ideal for mapping onto

hardware pipelines and loop transformations which can be performed to increase the

parallelism are described.

Several simulation tools have been developed for reprogrammable FPGAs. Most

tools are device based simulators and are not system level simulators. Some of the ef­

forts in this area are briefly described here. The most significant effort in this area has

been the Dynamic Circuit Switching (DCS) based simulation tools by Lysaght et.al. [51].

These tools study the dynamically reconfigurable behavior of FPGAs and are integrated

into the CAD framework. Though the simulation tools can analyze the dynamic circuit

behavior of FPGAs, the tools are still low level. The simulation is based on CAD tools

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

and requires the input design of the application to be specified in VHDL. The parameters

for the design are obtained only after processing by the device specific tools.

Luk et.al. describe a visualization tool for reconfigurable libraries [48]. They de­

veloped tools to simulate behavior and illustrate design structure. Their emphasis is on

visualization of library modules and not system level simulation or application perfor­

mance analysis. CHASTE [17] was a toolkit designed to experiment with the XC6200

at a low level. The toolkit allows circuit specification and performs timing analysis and

simulation. But, the target of the CHASTE system is low level design exploration and

not system level analysis. There are other software environments such as JHDL [7],

HOTWorks [27], Riley-2 [52], etc. But, they are software systems for low level hard­

ware design and evaluation and are not system level interpretive simulation frameworks.

Our proposed DRIVE framework permits system level simulation and analysis at an ab­

straction level much higher than existing simulations.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 5

Hybrid System Architecture Model

(HySAM)

The heartfelt cry o f many scientists is that computers force them to make

square holes for their round and fuzzy edged pegs.

- Anon

A model is a mathematical abstraction that captures to some degree of accuracy the

form and function of an entity, in a way that makes the model useful for specific purpose.

The complexity of the low level hardware features and application make it infea­

sible to explore the direct mapping of the application onto the actual hardware. There

is a semantic gap in the application description and the hardware architecture abilities.

An abstraction of the application and the hardware architecture is needed to bridge this

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

semantic gap. In this chapter we develop Hybrid System Architecture Model, a mathe­

matical abstraction of the applications tasks and the reconfigurable hardware features.

A high level model of reconfigurable hardware is needed to abstract the low level de­

tails. Existing models supplied by the CAD tools have either multiple abstraction layers

or are very device specific. We present a parameterized model of a configurable com­

puting system, which consists of configurable logic attached to a traditional micropro­

cessor. This model can be utilized for developing the actual mapping and scheduling of

these tasks onto the configurable system. Our model cleanly partitions the capabilities

of the hardware from the implementations and presents a very clean interface to the user.

The model consists of two complementary aspects. A declarative aspect and a gen­

erative aspect. Similar to automata, declarative aspect of a model specifies the param­

eterized model of the hybrid architecture. This forms the foundation of the algorithmic

analysis. The generative aspect specifies the ways in which the declarative aspect can

evolve based on a set of generative functions. The evolution of the model defines the

rule based transformation of the parameters of the model for each generative function.

We first describe our model of configurable architectures and then discuss the com­

ponents of the model and how they abstract the actual features of configurable architec­

tures. Then the generative aspect of the model is further elaborated.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.1 Hybrid System Architecture Model (HySAM)

The Hybrid System Architecture Model is a general model consisting of a von-neumann

style processor (CPU such as a microprocessor or an embedded processor) with addi­

tional Configurable Logic Unit (CLU). Figure 5.1 shows the architecture of the HySAM

model. The architecture consists of a traditional processor, standard memory, config­

urable logic, and configuration memory communicating through an interconnection net­

work.

The model consists of two complementary aspects. A declarative aspect and a gen­

erative aspect. The declarative aspect of a model specifies the parameterized model of

the hybrid architecture. This forms the foundation of the algorithmic analysis. The gen­

erative aspect specifies the ways in which the declarative aspect can evolve based on a

set of generative functions. The evolution of the model is a rule based transformation

of the parameters of the model, for each generative function.

Our model partitions the capabilities of the hardware from the implementations and

presents a formal interface for algorithmic optimization. The model abstracts the actual

implementation choices for each of the components of the model. The interconnection

network can be implementing using a wide variety of choices. It can be a bus based

architecture or dedicated connection between various modules. An example realization

of the HySAM model is shown in Figure 5.1.

The configurable logic consists of a matrix of size W xD logic units. The granularity

of the logic is u which is the granularity of an individual functional unit. For example,

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CPU

Interconnection
Network

Configurable
Logic
Unit

Configuration
Cache

On-chip
Memory

Configuration
Cache

Configurable
Logic
Unit

CPU

BUS

Figure 5.1: Hybrid System Architecture Model and example architecture

uj is 2 for many FPGAs, and is 32 for Chameleon RCP datapath. Configurations for

executing a function are composed from the configurations of the individual functional

units which are active in that configuration. Each functional unit can be configured to

perform an operation from a set of basic operations.

The parameterized HySAM which is outlined above can model a wide range of sys­

tems from board level architectures to systems on a chip. Such systems include SPLASH [19],

Triscend [26], Berkeley Garp [41], Chameleon RCP [72], DEC PeRLE [76] among oth­

ers. The values for each of the parameters establish the architecture and also dictate

the class of applications which can be effectively mapped onto the architecture. For

example, a system on a chip would have smaller size configurable logic(lower W and

V) than an board level architecture but would have potentially faster reconfiguration

times(lower rc and Tc).

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 5.1: HySAM model parameters and definitions

Parameter Definition
7 Set of functions 7 \ . . . 7 n (capabilities)
C Set of possible configurations C\ . . . Cm of the CLU (implementations)
A , Set of attributes for function F, using configuration C j
K i j Reconfiguration cost from C, to C’j

Q Set of generators that transform configurations
B Bandwidth of the interconnection network (bytes/cycle)
X Size of the configuration cache
Tc, Tc Access cost for configuration data from the cache and memory respectively
Td, Tj Access cost for data from the on-chip and external memory respectively
M Amount of on-chip data memory
U1 Granularity of the configurable logic functional unit
w, x> Width and Depth in units of u of CLU

5.2 Functions and Configurations

The input to the system is an application which is to be executed on the hybrid system

architecture. This input application is partitioned into tasks which are to be executed

on the CPU and the Configurable Logic Unit. The applications tasks to be executed are

then decomposed into a sequence of CLU functions(.F).

A configuration denotes a specific structure and arrangement of the configurable

logic which has a given functionality. A configuration describes the state of basic func­

tional units of the architecture. The uninitialized state of the CLU is denoted by Cq. Ex­

ecution of a function on the CPU is represented as execution in a special configuration

r' - 'c p u •

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The functions T and configurations C have a many-to-many relationship. Each con­

figuration Cj, can potentially contain more than one function Jrl. For example, a con­

figuration can contain both addition and logical OR. The execution cost of a function

Ti in configuration Cj is specified as one of the attributes in the set A tJ. Each function

T t can be executed by using any one configuration from a subset of the configurations.

The different configurations can potentially be generated by different tools, libraries or

algorithms. These configurations might have different area, time, reconfiguration, pre­

cision, power, etc. characteristics. For example, it is possible to design multipliers of

various area/time characteristics by choosing various degrees of pipelining and carry

look ahead techniques. The multiplier implementation can have different values for the

area, pipeline stages, cycle time and number of cycles for finishing the computation.

Similarly, fixed point operation configurations can be designed with various degrees of

precision.

The configuration required for executing a specific function has to be generated ei­

ther at compile time or on-the-fly at runtime. Compile time configurations can be gener­

ated by using schematic techniques or CAD mapping tools or dynamic pipeline gener­

ation by using component libraries. Runtime configurations can be generated by using

run-time parameterized circuits or by dynamic modification of the configuration infor­

mation before loading the configuration [47].

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.3 Attributes

The HySAM model associates parameters with each function-configuration pair which

are called attributes. The attributes define the relationships between a function T l and

a configuration Cj. They contain parameters such as computation costs and the data ac­

cess costs in terms of the amount of data accessed. These costs can be translated to

actual timing costs based on the register/memory/bus access costs. The attributes can

be extended to include additional variables that reflect other optimization criteria such

as power and area. We define below some attributes which are utilized in the algorithms

in this thesis.

Attributes Matrix (for T x in Cj) -

• t - execution latency(execution time) of function F, in configuration Cj.

• p - execution throughput or the data rate of function F, in configuration Cj.

• 7t - precision of the operands. Depending on the context the precision can be the

sum of the bit-widths of the operands or a vector representing the individual bit-

widths of all input and output operands.

• ,8 in and 3out- input and output data bandwidth required. The overhead required

for data communication is absorbed by this parameter. The precision (71-) and the

number of samples required determines j3in and j30Ut. These parameters in con­

junction with the data access costs rd and define the total input and output data

access cost for executing a function T i in a configuration Cj.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The input and output memory bandwidth requirements are specific not only to the

function being executed but also the configuration that is utilized. For example, a 32-bit

adder executed by using a bit-parallel adder has 32 bit input in one cycle. A bit-serial

adder needs 32 bits at a rate of 1 bit/cycle.

The bandwidth required also depends on the mode of data access and execution. If

the configuration is executing in a pipeline configuration or in a streaming mode, then

the bandwidth requirement reflects the instantaeneous bandwidth for accessing one set

of input data samples. But if the data is to be first accessed from external memory and

stored into on-chip memory and then utilized then the bandwidth requirements require­

ments reflect the cost of accessing all the data samples from external memory. The cost

parameters also include any possible overlap of input, output and execution.

The actual total data access costs are dependent on the bandwidth requirement pa­

rameters (/?,„ and 30ut) and the cost of data access from memory (rd and T d). For exam­

ple, when the execution is performed by reading data from on-chip memory and writing

back to on-chip memory then the total data access overhead is given by rd * (/?,„ + fiout).

5.4 Memory Access

The total system memory access bandwidth is modeled by the bandwidth of the inter­

connection network, B. At any specific instant in the execution, the peak instantaneous

bandwidth required can be computed based on the attributes of the functions executing

using given set of configurations on the hardware. The configuration and data access

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

costs in accessing data elements from various memory modules are specified by the ac­

cess cost parameters given below:

• tc and r c - These constants define the costs in accessing configuration data from

configuration cache and memory respectively. The configuration cache might be a

distributed multi-context cache memory or an off-chip cache. The costs specified

as cycles/byte denote the cost in accessing the configuration bit-stream informa­

tion.

• rd and r d - The data elements required for computation in a given configuration

can be streamed from memory or loaded from on-chip memory words. The access

costs rd and Td denote the costs in accessing the data words from on-chip memory

and off-chip memory, respectively.

5.5 Reconfiguration and Configuration Cache

To execute a different task the logic needs to be reconfigured to execute a different con­

figuration. Changing the configuration of the logic has some associated overheads. In

current reconfigurable devices and system architectures, the reconfiguration time is sig­

nificant compared to the execution time for the operation.

We assume Co denotes the null configuration when configurable logic is not initial­

ized. Hence, TZq, denotes the time to configure the logic to a configuration C, from the

initial unconfigured state. 7Zij denotes the cost of changing the configuration from C,

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

to Cj. This cost is a measure of the amount of logic reconfigured and the time spent in

reconfiguring. It is possible to reduce the reconfiguration overhead by exploiting partial

and dynamic reconfiguration cost. For a given CLU design and a set of configurations,

partial and dynamic reconfiguration is included in the definition of the 7Zij cost.

c, c3

Figure 5.2: Example Reconfiguration

Figure 5.2 graphically portrays the reconfiguration of the logic from configuration

Ci to C3 where C\ executes the function T\ and C3 executes the function 7£ 13 is the

reconfiguration cost in changing from configuration C\ to C3.

The configuration cache acts as afunction cache holding various configurations which

can execute different functions. It can be utilized to achieve lower reconfiguration times

between tasks which are executed large number of times. The configuration cache has

the capacity to hold \ configurations. The cost of accessing the cached configuration

data is rc cycles/byte and the cost of accessing configuration data not in the cache is

r c cycles/byte. The configuration cache might be realized as distributed configuration

store or even as off-chip configuration memory. The physical realization is not relevant,

but it does effect the concurrent activities that can occur in the system.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.6 Generative Aspect

Generator Q is a composition function, Q : C x C —»■ C . It abstracts the process of com­

position of configurations to generate other configurations. The physical process of con­

structing reconfigurable computing solutions is abstracted using the generators. Gener­

ators are a class of functions which define the various forms of composition. The range

of the generator function, C , is a superset of C and potentially includes new configura­

tions generated by the transformation. Each generator defines not only the composition

function but also describes how the attributes are transformed based on the composition.

A (g(C l.C2)) = fe(A(C l),A(C2))

The definition of function fg depends on the specific generator Q that is utilized in

the composition. The composition functions can be evaluated for feasibility based on

the constraints imposed by the parameters of the available resources such as logic area,

time and memory. The generators can be utilized recursively to compose larger configu­

rations. We do not exhaustively describe the possible set of generator functions here but

give examples of some fundamental compositions to illustrate the concept. The trans­

formation functions for attributes of the generated configurations can be defined as given

below.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.6.1 Generators

• Parallel: Qpar

This generator abstracts the execution of more than one configuration in parallel

on the CLU. The resulting configuration can execute multiple functions concur­

rently. The generator can compose multiple versions of the same configurations to

achieve parallelization or compose different configurations. The mapping func­

tion for the attributes can be specified as:

t iGpariCuC’)) = m a x { t Cl, t c 3)

P = p (C i) + p { C i)

(3 in = f i in (C l) + fiin(C-2)

fiout = f iou t{C l) + QoutiC'l)

• Serial: Qser

This generator simply composes larger configurations from different configura­

tions by connecting them together. After computation in a configuration, the data

is communicated to the subsequent configurations. The delay of the configura­

tions is accumulated.

t{Gser{Ci,C2)) = t{Ci) + t{C2)

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

p 1/ (P (C .) % (C 2))

A n — A n (C l)

Aju< = A u l (C 2)

• Pipelining: C/pipe

The process of constructing a design by pipelining data through a set of config­

urations can be abstracted using this generator. The configurations are not only

executing concurrently, but are also operating on data items from other configura­

tions in the same set. Only one configuration on the CLU receives input from the

external source (memory, processor etc.) and one configuration communicates

data to an external source, (data is stored between configurations using clocked

memory elements such as registers).

i (Qpipei^l 1 (-2)) — t(C i)+ t{C 2)

p - min(p(Ci).p{C2))

A n = A n (C l)

Pout = A t l l (C l)

These basic generators define some fundamental compositions. Recursive applica­

tion of these generators can be utilized to generate a large class of configurations for

applications from the basic configurations.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.6.2 Reconfiguration Cost

The Reconfiguration cost matrix for the additional configurations is also specified by the

generator functions. The composition functions define the arithmetic of the reconfigura­

tion cost. The general expression for the approximate reconfiguration cost computation

for the above generators is given below:

Tl{Q{Ci .Cj) .Ck) = m i n { l l (C i , C o) + 'R.{C] .Ck).

TZlCj.Co) + 1Z[Ct . Ck)-

n(Ci,Ck) + n(Cj.ck) - n(c0.ck)}

The three different terms in the min pertain to the cases when the reconfiguration

costs of different pairs are based on some partial reconfiguration. The additional TZ{C0. Ck)

factor in the third term considers the fact that the TZ(Ci.Ck) and 7Z(Cj .Ck) terms of the

expression contribute twice to the configuration cost specific to Ck-

The reconfiguration cost between two different configurations generated using the

recursive application of the generators can be computed by using the equation defined

above for the Reconfiguration cost. As an illustrative example, the reconfiguration cost

between the two pipelined configurations shown in Figure 5.3 can be computed to be

equal to 7£c2,c4- This reconfiguration cost computation is used implicitly throughout

the thesis when determining the reconfiguration cost between complex combinations

of configurations.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C7

Figure 5.3: Two different compositions

5.7 Execution Model

The input to the system is an application which is to be executed on the reconfigurable

hybrid system architecture. This input application is partitioned into tasks which are to

be executed on the CPU and the Configurable Logic Unit. The applications tasks to be

executed are then decomposed into a sequence of CLU functions(.F). The representa­

tion of the complete application is a task graph with functions as nodes and the edges

representing the precedence constraints. If a task 7} is dependent on T, (control or data

dependency) then it is indicated as T j x T, . An edge is labeled with the input and the

output bandwidth (/?,•„ and Qout) of the tasks related by that edge.

This sequence of tasks is then mapped onto a sequence of configurations, a (cria2 . . . crp,

where <r, 6 C). Note that it is possible to have a configuration repeat in the sequence,

possibly for sequential tasks (<x, = crj and i ^ j) . Algorithmic optimization techniques

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

R 41

Algorithmic
Mapping
Techniques

■ f a
M3

Figure 5.4: HySAM execution model

are utilized to arrive at an optimal sequence of configurations. The tasks are executed

on the CPU or on the CLU. Execution of a function on the CLU involves loading the

configuration onto the CLU and communicating the required data to the CLU. After exe­

cuting in a configuration C,, to execute in a different configuration C2, the CLU has to be

reconfigured which takes 1Zij time. The total execution time is the time spent executing

in each configuration and the time spent in reconfiguration between the executions.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 6

Mapping Techniques

Computer science is no more about computers than astronomy is about tele­

scopes.

— E.W. Dijkstra

The problem of mapping operations(tasks) of a loop to a configurable system in­

volves not only generating the configurations for each of the operations, but also reduc­

ing the overheads incurred. The sequence of tasks to be executed have to be mapped

onto a sequence of configurations that are used to execute these tasks. The objective is

to reduce the total execution time.

Scheduling a general sequence of tasks with a set of dependencies to minimize the

total execution time is known to be an NP-complete problem. We consider the problem

of generating this sequence of configurations for loop constructs which have a sequence

of statements to be executed in linear order. There is a linear data or control dependency

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

between every pair of adjacent tasks. Most loop constructs, including those which are

mapped onto high performance pipelined configurations, fall into such a class.

The total execution time includes the time taken to execute the tasks in the chosen

configurations and the time spent in reconfiguring the logic between successive con­

figurations. We have to not only choose configurations which execute the given tasks

fast, but also have to reduce the reconfiguration time. As we have seen in the previous

sections, it is possible to choose one of many possible configurations for each task exe­

cution. Also, the reconfiguration time depends on the choice of configurations that we

make. Since reconfiguration times are significant compared to the task execution times,

our goal should be to minimize this overhead.

6.1 Generic Mapping Problem (GMP)

GMP Problem: Given a set of tasks, Ti through Tp (T, 6 F) and a partial order oc on

the tasks, find an optimal sequence of configurations cr(o\ a2 . . . crp) (<r, € C). The goal

is to minimize the execution time cost E given by

& = *«'.«' + $ i n + P'out +
i=l

where thl is execution time for task 71, in configuration <r,, j3\n and fl'out denote the

input and output data access cost and 7£,-,l + 1 is the reconfiguration cost from <t, to ai+l.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

6.1.1 NP-Completeness

Theorem 1 The general scheduling problem, GMP, defined above is NP-complete.

Proof: We prove the complexity of the GMP problem by transforming a known NP-

complete problem to a simpler variation of the mapping problem defined above. The

mapping problem GMP with constant cost for each reconfiguration and functions with

same execution time in all configurations is considered. We do not formally establish

the order of complexity of the simple problem. But, it is evident that the variable recon­

figuration and execution costs only increase the complexity the of the GMP problem.

In the first step, the decision problem for the GMP problem can be verified to be

in NP. Given a constant I\ and a schedule a , it is possible to verify whether the cost

of the schedule is less than K in polynomial time. In the second step, the problem of

Sequencing with deadlines and set-up times (SS6) from [35] can be transformed to the

GMP problem. The SS6 problem is defined as:

SS6 Problem: Given a set C of compilers, set T of tasks, for each t € T a length

l(t) G Z +, a deadline d(t) e Z +, and a compiler k(t) e C, and for each c € C aset-up

time 1(c) e Zq, is there a one-processor schedule o that meets all task deadlines and

satisfies that whenever two tasks t and t' are scheduled consecutively and have different

compilers, then o(l f) > a(t) + l(t) + /(£(£'))?

The transformation is carried out by defining the set of configurations C in GMP

based on the set of compilers C and the set of tasks T in GMP based on the tasks T

in SS6 . The latencies of the tasks in SS6 are transformed to the execution times of the

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

tasks in GMP. The compiler set-up times in SS6 are transformed to the reconfiguration

costs for each configuration in GMP. The deadlines d(t) in the SS6 problem define the

partial order oc in the GMP. If a task t has an earlier deadline than t' in the SS6 problem

then t oc t' in the GMP problem. The time taken for the transformation is polynomial in

the sizes of the set of tasks (|| T ||) and the set of compilers (|| C ||). The transformation

proves that the simplified version of the GMP problem is itself NP-complete. Therefore,

the GMP problem is NP-complete O .

In later sections and chapters we develop algorithms which are polynomial in time

complexity for variants of the problem when the partial order a is more constrained. We

examine such problems in the context of loop computations that occur in most compute

intensive applications.

6.2 Loop Synthesis

Computations which operate on a large set of data using the same set of operations are

most likely to benefit from configurable computing. Hence, loop structures will be the

most likely candidates for performance improvement using configurable logic. Config­

urations which execute each task can be generated for the operations in a loop. Since

each operation is executed on a dedicated hardware configuration, the execution time

for the task is expected to be lower than that in software.

The loops that are mapped onto configurable logic do not have complex control or

address calculation. The characteristics of such loops are outlined below:

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• Constant step size for the index

• No function calls in loop body

• No pointer operations or pointer arithmetic

• No loop carried dependencies

Though not all loop constructs satisfy these constructs, many commonly occurring

loops, including those in benchmark programs, satisfy these constraints. Loop transfor­

mation techniques [81] can be utilized to convert arbitrary loops to conform to the above

constraints.

6.2.1 Linear Loop Synthesis

We consider the problem of generating this sequence of configurations for loop con­

structs which have a sequence of statements to be executed in linear order. There is a

linear data or control dependency between every pair of adjacent tasks. The total exe­

cution time includes the time taken to execute the tasks in the chosen configurations and

the time spent in reconfiguring the logic between successive configurations. We have

to not only choose configurations which execute the given tasks fast, but also have to

reduce the reconfiguration time.

In the following sections we define the problem based on our model and then develop

an optimal solution for the problem of mapping a linear loop onto an architecture that

does not employ a configuration cache.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

6.2.2 Linear Loop Mapping Problem

Find an optimal sequence o f configurations to execute a linear sequence o f statements

in a loop.

LMP: Given a set of tasks, Tx through Tp (T, G F) to be executed in linear order (Ti+1 oc

Ti, 1 <i<p), find an optimal sequence of configurations o{crx cr2 ■■■ cP) (<xt G C). The

goal is to minimize the execution time cost E given by

F = i.i + A'in + flout + ^M +1)
i=i

where f,., is execution time for task T, in configuration c r 3 ‘n and 3'0Ut denote the input

and output data access cost and 7£ ,,1+1 is the reconfiguration cost from <r, to <r1+i .

6.2.3 Optimal Solution

The input consists of a sequence of statements Tx . . . T p (Tt G F) and the number of

iterations N. We can compute the execution times t tJ for executing each of the tasks

T{ in configuration Cr The reconfiguration costs Rij can be pre-computed since the

configurations are known beforehand. In addition there is a loop setup cost which is the

cost for the system to initiate computation by the Configurable Logic Unit.

A simple greedy approach of choosing the best configuration for each task is not

optimal since the reconfiguration costs for later tasks are affected by the choice of con­

figuration for the current task. The complete solution space needs to be searched by

considering all possible configurations in which each task can be executed.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

We use dynamic programming to search the solution space. In the solution space the

same sequence of configurations for a given sequence of tasks occurs as part of multiple

larger problems. Dynamic programming can be utilized to compute the optimal solution

for the complete sequence of tasks by using solutions for smaller subsequences . Once

an optimal solution for executing up to task T, is determined, the cost for executing up to

task Ti+l can be determined. This approach is used recursively to compute the optimal

solution.

Theorem 2 Given a sequence o f tasks ■ ■. T f an optimal sequence o f configura­

tions, a, for executing these tasks once can be computed in 0 { rm 2) time.

Proof. We use the dynamic programming approach to compute the optimal sequence,

a. We define the optimal cost of executing up to task T{ ending in a configuration Cj as

Eij. We initialize the E values as E0j = 0, V j : 1 < j < m .

We assume that optimal solutions for executing up to task T{ ending in all possible

configurations, oj, are computed. Now for each of the possible configurations (<t, 6 C)

in which we can execute T{+1 we have to compute an optimal sequence of configurations

ending in that configuration, oj. We compute this by using the recursive equation:

Ei+ij = t i+i j + f i ' i t1 + Pitt + mink{Eik + K kj) V j : 1 < j < m

We have examined all possible ways to execute the task T/+1 once we have finished

executing T(. If each of the values Eik is optimal then the value E,+lj is optimal. Hence

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

we can compute an optimal sequence of configurations by computing the E{j values.

The minimum cost for the complete task sequence(711/T2' . . . T') is given by minj[Erj].

The corresponding optimal configuration sequence can be computed by using the E ma­

trix.

Computation of each value takes 0{m) time as there are m configurations. Since

there are O(rm) values to be computed, the total time complexity is 0 (r m 2). Q

Theorem 2 provides a solution for an optimal sequence of configurations to compute

one iteration of the loop statement. But repeating this sequence of configurations is not

guaranteed to give an optimal execution for N iterations. Figure 6.1 shows the config­

uration space for two tasks 7\ and T2 and four possible configurations Ci, C2, C’3, C4.

T\ can be executed in C\ or C'3 and task T2 can be executed in C2 or C.t. The edges

are labeled with the reconfiguration costs and cost for the edges and configurations not

shown is very high. We can see that an optimal sequence of execution for more than

two iterations will be the sequence C\ C\ C3 C 2 repeated N/2 times. The repeated se­

quence of Ci which is an optimal solution for one iteration does not give an optimal

solution for N iterations.

Tj T2 T! T2

Figure 6.1: Example reconfiguration costs and optimal configuration sequence

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

One simple solution is to fully unroll the loop and compute an optimal sequence

of configurations for all the tasks. But the complexity of algorithm will be 0 (N p m 2),

where N is the number of iterations. Typically the value of N is very large (which is

desirable since higher value of N gives higher speedup compared to software execu­

tion). We assume N m and N 3> p. We also assume that N mod p * m = 0 (p * m

divides N exactly). We show that an optimal configuration sequence can be computed

in 0 (pm 3) time.

Lemma 1 An optimal configuration sequence can be computed by unrolling the loop

only m times.

Proof: Let us denote the optimal sequence of configurations for the fully unrolled

loop by (Ticr2. . . eriV,p. After executing one iteration, configuration <rp+i executes task

<t i . Therefore, task 7\ is executed in each of configurations <71,<7p+1,<72. p+ i , . . .,crr _p+1.

There are at most m configurations for each task. If the number of configurations in

< 7i,o ‘p + i ,o - 2. p + i , . • ;<7n .p- p+i is more than m then some configuration will repeat. Since

weassumed/V » m, some configuration will repeat. Therefore, 3 yx and y2 s. t . a yx. p+\ =

<jy2 .p+i. Also, f/2 — i/1 < m .

The execution cost is a monotonically non-decreasing function since there are no

negative values for any of the execution, reconfiguration or input/output costs. Let y3 =

2/2 + 2/2 — 2/i- The subsequences of tasks from yx * p + 1 to y2 * p and y2 * p + 1

to i/3 * p are identical. These subsequences are the same number of multiple iterations

of the loop. The subsequences are identical and the first configuration for the first task

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

in each subsequence is same. Therefore, dynamic programming will select the same

subsequence of configurations for both the subsequences of tasks. Given that

^Bl*P+l !̂/l*P + 2 • • • — T ’y 2 , p + l 7 ’y 2 « p + 2 • • - T y 3 . p

the optimal sequence will have

<7y i * p + l <7y i * p + 2 • • • G y i - p — cr<f2’ P + l (7y 2 Mp + 2 • • • ^ y z ' P

Applying the same argument to the complete sequence, it can be proved that all sub­

sequences are identical. The identical subsequence is the subsequence between the first

repetitions of matching task and configuration pair. Intuitively, the proof states that there

exists a cycle in the sequence of configurations and the maximum length of the cycle is

bounded.

There are p tasks with m possible configurations for each task. Therefore, the longest

possible length of such a subsequence is p*m. This subsequence of p*m configurations

is repeated to give the optimal configuration sequence for N * p tasks. Hence, we need

to unroll the loop only m times. O

Theorem 3 The optimal sequence o f configurations for N iterations ofa loop statement

with p tasks, when each task can be executed in one o f m possible configurations, can

be computed in 0 (pm3) time.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Proof. From Lemma 1 we know that we need to unroll the loop only m times to com­

pute the required sequence of configurations. The solution for the unrolled sequence of

p * m tasks can be computed in 0 (pm3) by using Theorem 2. This sequence can then

be repeated to give the required sequence of configurations for all the iterations. Hence,

the total complexity is 0 {pm3). O

The complexity of the algorithm is 0(pm3) which is better than complexity by fully

unrolling, 0 (N p m 2), by a factor of 0(/V/m). This solution can also be used when the

number of iterations N is not known at compile time and is determined at runtime. The

decision to use this sequence of configurations to execute the loop can be taken at run­

time from the statically known loop setup and single iteration execution costs and the

runtime determined N.

6.2.4 Illustrative Example

The Discrete Fourier Transform(DFT) is a very important component of many signal

processing systems. Typical implementations use the Fast Fourier Transform(FFT) to

compute the DFT in 0 { N log A') time. The basic computation unit is the butterfly unit

which has 2 inputs and 2 outputs. It involves one complex multiplication, one complex

addition and one complex subtraction.

There have been several implementations of FFT in FPGAs [58,60]. The compu­

tation can be optimized in various ways to suit the technology and achieve high perfor­

mance. We describe here an analysis of the implementation to highlight the key features

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

of our mapping technique and model. The aim is to highlight the technique of mapping

a sequence of operations onto a sequence of configurations. This technique can be uti­

lized to map onto any configurable architecture. We use the timing and area information

from Garp [41] architecture as representative values.

For the given architecture we first determine the model parameters. We calculated

the model parameters from published values and have tabulated them in Table 6.1 be­

low. The set of functions(.F) and the configurations(C) are outlined in Table 1 below.

The values of n and m are 4 and 6 respectively. The Configuration Time column gives

the reconfiguration values 71. We assume the reconfiguration values are same for same

target configuration irrespective of the initial configuration. The Execution Time col­

umn gives the ttJ values for our model. The configuration C3 for the multiplier uses a

sequential shift-add configuration to do the multiply and has a high execution cost.

Table 6.1: Representative Model Parameters for Garp Architecture

Function Operation Configuration Configuration
Time ((is)

Execution
Time (n s)

T x Multiply(Fast) C i 14.4 37.5
Multiply(Slow) C o 6.4 52.5
Multiply(Adder) c3 4.8 480.0

Addition c4 1.6 7.5
f t Subtraction c5 1.6 7.5
f t Shift C s 3.2 7.5

The input application which is the FFT innermost loop is analyzed and decomposed.

First, the loop statements have to be decomposed into functions which can be executed

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

on the CLU, given the list of functions in Table 6.1. One complex multiplication consists

of four multiplications, one addition and one subtraction. Each complex addition and

subtraction consist of two additions and subtractions respectively. The statements in the

loop are mapped to multiplications, additions and subtractions which will result in the

task sequence Tm, Tm, Tm, Tm, Ta, Ts, Ta, Ta, Ts, Ts. Here, Tm is the multiplication

task mapped to function T \, Ta is the addition task mapped to function JF2 and Ts is the

subtraction task mapped to function T-$.

When we find the optimal sequence of configurations for this task sequence using

our algorithm, the solution is the configuration sequence C \X ^ X^ . CA.C^ repeated for

all the iterations. The most important aspect of the solution is that the multiplier config­

uration in the solution is not the fastest implementation. The reconfiguration overhead

is lower for C2 and hence the higher execution cost is amortized over all the iterations

of the loop. But, the configuration with the least configuration cost has a very high exe­

cution cost which does not ameliorate the lower configuration cost. The total execution

time is using the optimal sequence of configurations is N * 13.055/zs where N is the

number of iterations.

6.2.5 Mapping Configurations onto Multiple Contexts

Each of the operations in the loop statement might be a simple operation such as an

addition of two integers or can be a more complex operation such as a square root of a

floating point number. The problems and solutions that we present are independent of

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

the complexity of the operation. As we described in Section 5.1, a single operation can

be implemented using various optimizations to provide several implementations. These

different configurations can have different performance characteristics.

The mapping problem is to select the configuration to be utilized for each function

and the configurations which are stored in the contexts. To select the configuration for

executing a given function we can employ the greedy strategy. The greedy algorithm

chooses the best possible configuration for executing a given function, i.e., the configu­

ration with the lowest execution cost. But this configuration might have a large reconfig­

uration cost which increases the total execution time and gives a sub-optimal solution.

For selecting the configurations to be pre-loaded the greedy strategy is still sub-optimal.

Pre-loading the configuration with the highest reconfiguration cost gives a sub-optimal

solution. Selecting a different configuration to be pre-loaded and using a configuration

with lower execution cost can give a better solution [14]. We assume the following re­

garding the model as explained in Section 5.1:

1. The \ configurations are loaded on to the device at the start of the computation.

2. The active context can be configured from any of the \ configurations with a cost

X c -

3. The pre-loaded configurations can not be modified during the execution of the

complete application. Only the active context can be reconfigured externally.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

6.2.6 Multicontext Loop Mapping Problem

MMP: Given a set of tasks, Tx through Tp (T, € F) to be executed in linear order

(Ti+1 oc Ti, 1 <i<p) and a multi-context buffer of size find an optimal sequence of

configurations a{ax er2 ■ ■ ■ &P) (&; € C). The goal is to minimize the execution time cost

E given by p
£ = £ (' . . . + * ,+ / * L + rc;,,„)

i ' = i

where f,., is execution time for task Tt in configuration <rl, j3)n and 3'0ut denote the input

and output data access cost and 7£' l+1 is the reconfiguration cost from a, to <r1+1 given

by:

F-'ij = Xc i f Cj € A

= 7Zij otherwise

Solution: We compute the optimal schedule a and the set of contexts \ by using a dy­

namic programming approach. We first discuss how the optimal solution can be com­

puted for a fully unrolled loop. All the iterations of the loop are unrolled to give a linear

task sequence. We define the following variables:

• Eij, 1 < j < m: the cost of executing tasks 71 to 7; with T, being executed

using configuration Cj and the configuration Cj is added to the contexts in A if

not already in A.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• Eij, m + 1 < j < 2*m: the cost of executing tasks 77 to 77 with 77 being executed

using configuration Cj and the configuration calCj is not added to the contexts in

A if not already in A.

• Aij, 1 < j < 2 * m: the set of contexts which are added to A for executing tasks

77 to Ti with 77 being executed using configuration C} .

• | Atj |: the number of contexts in set A,j.

The and the AtJ values are computed using dynamic programming. The recur­

sive equations for computing them are given below:

k = k such that 1 < k < 2 * m and min[Eik + /̂tj]

&kj denotes the reconfiguration cost and can be evaluated based on the various possible

scenarios:

• Configuration C3 is already in cache. The reconfiguration cost is the cost of per­

forming a context switch, \ c.

• Configuration Cj has not been cached. The reconfiguration cost is based on the

set |A,fc|. If there is space in this set of configurations to be pre-loaded, then the

configuration Cj is added to the set and reconfiguration cost is \c- If the cache is

already full then the full reconfiguration cost 7 is incurred.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The value of Skj is computed at each step as

i f (Cj e A ik)

f o j = Yc

else i f (|Afcj-1 < \ and 1 < j < m)

K = \ c

else

&kj = 'R-ij

Given the value of k, the El+lj and the AI+lj values are computed as follows

Ei+ij = ti+ij + £ j. + $k ■

Ai+ij — A; j. U Cj

l^iil < X an(i 1 < j < m)

— A, mink otherwise

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The minimum execution cost E and the corresponding set of contexts A for execut­

ing tasks T ito T ; for any z are given by:

j = j such that 1 < j < 2 * m and min[E~j]

E = E z]

x = x *l

The required optimal schedule and the set of contexts can be computed by fully unrolling

the loop and computing E and A for ~ = N* p where N is the number of the iterations

and p is the number of tasks in the loop. O

6.3 Dynamic Precision Management

There are several methods of generating custom hardware configurations suited to the

computations to be performed. The ability to perform variable precision arithmetic is

one of the significant advantages of reconfigurable hardware.

Reconfigurable hardware such as FPGAs and various custom computing machines

contain fine-grained configurable resources. Such fine-grained configurable logic can

be utilized to build computing modules of various sizes. The modules can be built to

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

perform computations on various bit-widths. For example, it is possible to build a stan­

dard 16-bitx 16-bit multiplier or a 8 -bitx 1 2 -bit multiplier using reconfigurable hard­

ware. The 8 -bitx 12-bit multiplier would consume less area and execute faster than the

standard 16-bitx 16-bit multiplier.

In configurable hardware, using higher precision usually results in wastage of re­

sources such as logic area, time and power. For example, performing 32-bit multipli­

cations when the operands have only 8 significant bits will typically require 16 times

more area and 4 times more execution time. Redundant computations also expend more

clock cycles and increase the power consumption. The ability to construct modules of

required precision is one of the key advantages of reconfigurable hardware. Variable

precision computations can be implemented by using a static approach. In the static

approach, the precision of the operands and operation is fixed at compile time and can

be different from the standard precision(e.g. 8 -bit, 16-bit, 32-bit, etc.) used on micro­

processors. Reconfigurable architectures also support dynamic precision, which is the

ability of the hardware to change its precision at run-time in response to variant preci­

sion demands of the algorithm.

Applications are typically developed to perform operations on standard 32-bit vari­

ables. The precision of the operands and the operations is sufficient to guarantee the

correctness of the operations in the worst case. But in most applications, the actual pre­

cision required for computations is usually much lower than the precision implemented.

This is typically the case in computations which accumulate values as the computations

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

progress, as in iterative computations such as loops. The precision of the operands in­

creases as the iterations of the loops progress. Loop computations offer the most po­

tential for pipelining and parallelizing in most applications. Configurable hardware is

an excellent match for computations with fine-grain pipelining and parallelism. In ad­

dition to the performance benefits obtained by mapping of computations in a loop onto

configurable hardware, loops can also take advantage of variable precision.

Applications are currently mapped to reconfigurable hardware either by high level

behavioral compilers or exhaustive hand-tooled designs. To extract the performance ad­

vantages of configurable hardware for variable precision, the trade-offs in performing

computations using a very high precision versus changing the precision of computations

as the execution progresses need to be evaluated. Performing this analysis by hand and

tuning the implementation to the requirements of the application entails significant ef­

fort on the part of the designer. Dynamic precision management can result in imple­

mentations with lower execution times, logic area and power consumption compared to

previous approaches.

For managing dynamic precision in loop computations, intelligent choices on the

use of appropriate modules from the available set of modules with different precision

need to be made. These configurations then have to be scheduled to achieve optimal

execution schedule. We consider a schedule to be optimal if the schedule has minimum

total execution time, which includes both the execution time in various configurations

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

and the reconfiguration time between configurations. Currently, a framework for man­

aging dynamic precision computations for any class of computations does not exist. We

develop such a framework for loop computations in this thesis [13].

In Section 6.3.1 we give an overview of our approach to the dynamic precision man­

agement problem. Each of the steps in our approach are then described in detail in the

later sections. Analysis of the required precision for loop computations is discussed in

Section 6.3.2. The variable precision loop mapping problem is defined and our Dynamic

Precision Management Algorithm(DPMA) for computing the optimal schedule is pre­

sented in Section 6.3.6. We illustrate the utility of our approach by showing an example

mapping in Section 6.3.9.

6.3.1 Overview of Dynamic Precision Variation

This section details an approach to managing the task of adapting the precision of the

implementation to that of the application. An overview of our approach is shown in Fig­

ure 6.2. We focus our efforts on dynamic precision management for loop computations

since they are the most compute intensive tasks in typical applications. For the loop

computations in applications, we describe an approach to determine the required preci­

sion using theoretical analysis and run-time instrumentation. The required precision for

the computations in a loop can be expressed as the variation in precision as the iterations

of the loop progress. We introduce the concept of the precision variation curve to repre­

sent this variation. The precision variation curve for the operations and operands in the

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Theoretical
Analysis

Run-time
Analysis

Dynamic Precision Management Algorithm (DPMA)

Sample
Data Sets

Optimal
Schedule

Precision
Variation
Curve

Variable
Precision

Configurations

HySAM
Architecture

Model

Application Loop
Computations

Figure 6.2: Overview of our approach for dynamic precision management in
loops(shaded and rounded regions indicate our contributions)

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

loop can be identified either by theoretical analysis or by run-time analysis as described

in Section 6.3.2.

Given the required precision for the iterations of the loop, we need to determine the

mapping of the iterations to a set of configurations which are used to execute the opera­

tions in the loop. For each iteration the precision of the configuration which executes the

iteration should be equal to or greater than the required precision for that iteration. The

configurations are chosen from the set of library components or parameterized modules

that are provided for the architecture.

Given the requirements for the precision of the computations and the available mod­

ule configurations, we compute the set of configurations and the schedule of reconfig­

urations. We compute these by developing algorithmic techniques for precision man­

agement. First, we develop an abstract model of reconfigurable architectures, the Hy­

brid System Architecture Model(HySAM). This parameterized abstract model is gen­

eral enough to capture a wide range of configurable systems. We define the precision

management problem in loop computations using our model. A dynamic precision man­

agement algorithm is then developed to compute the optimal sequence of configurations

for minimizing the total execution time including the reconfiguration time.

6.3.2 Precision Requirement Analysis

Applications typically use more precision than is necessary for computations. The pre­

cision used for operations is based on the maximum possible precision the operands

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

can attain. Usually, the actual precision required for computations is different from the

standard precision(e.g. 8 -bit, 16-bit, 32-bit etc.) supplied by microprocessors or ASIC

hardware. By determining the exact precision required for operations we can reduce

the resources required for the operation. This reduction can be in logic area, execution

time or power consumption. Determining the required precision is not a trivial task as

the actual data input to the application is not known until run-time. Evaluation of the

required precision at run-time without any framework for analyzing the nature of the

variation and the algorithmic techniques for utilizing this variation cannot provide any

performance benefits.

The precision required for the computations in an application might not only vary

with the specific operation but also change as the execution progresses. For iterative

computations in which values are accumulated over the execution time of the applica­

tion, the precision varies as the iterations progress. Loop computations are the most

typical iterative computations which show such behavior. In addition to the varying

precision, loops are the most compute intensive tasks in a program. In this thesis we

focus on the varying precision of operations in loop computations. This variation can

be measured by analyzing the variation of the precision of the operands and the opera­

tions as the iterations progress. We represent this variation in terms of the loop iterations

by using the precision variation curve.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

6.3.3 Precision Variation Curve

The precision variation curve facilitates the representation of the notion of the variation

in the precision of the operands and the operation as the execution of the loop progresses.

A simple method to represent such a variation is to indicate the precision of the operand

for each iteration so that the precision is defined for the whole iteration space. But as

we shall show in the subsequent sections, the precision usually varies very slowly as the

iterations progress. Thus the precision variation curve can be represented by specifying

the points where the precision of the operands or the operation changes.

Definition: The precision variation curve for a given operation or operand in a loop

computation can be represented by the sequence (77,-. <?,), l< i< T /?, denotes the itera­

tion number at which a change in precision takes place due to the computation. 77, < N

where N is the total number of iterations, o; denotes the precision required for per­

forming iterations rjt to 77,+i — 1 for 1 < / < f. and <pt denotes the precision required for

performing iterations rj(to N.

Examples of precision variation curves are shown in Figure 6.4. We develop the­

oretical and run-time instrumentation methods for determining the precision variation

curve in the next two sections.

6.3.4 Theoretical Analysis of Loops

We can theoretically determine the precision variation curve for the operations in a

given computation. The precision of computed variables in a loop is determined by the

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

DO 10 1=1,N
DO 20 J=1,N

RSQ(J) = RSQ(J)+XDIFF(I,J)*YDIFF(I, J)
20 IF (MAXQ.LT.RSQ(J)) THEN

MAXQ = RSQ(J)
POVERR = POVERR / MAXQ

10 VIRTXY = VIRTXY + MAXQ * SCALE(I)

Figure 6.3: Example code for simulations

precision of the variables before the iteration, the number of iterations and the opera­

tions performed on the variable. For each type of arithmetic operation, the maximum

possible precision of the result can be expressed using the above values. For example,

the precision of a variable .Y(initially 0) after N iterations of a loop which contains the

statement .Y = X + A (where A is a constant) is bounded by

*x < + log(iV + 1)

where ttx denotes the precision (bit size) of the variable .Y. The analysis is not limited to

simple expressions, but extends to complex arithmetic expressions in loops. In recursive

expressions in loops where the value of the variable .Y in iteration i is given by .Y,, if

X i = 5! * .Y j , + £ 2 * X h + . . . + Sk * X Jk = E { = f t * X j ,

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The upper bound on the precision of A', is given by

7T.Y, < O' - 1) * log A + (z — 1) * log k + 7TJC,

where A = 82, ■ ■ -, <£t], the maximum of the constant coefficients. Similarly,

for the expression A' = A" x A, the upper bound of precision for X with an initial value

1 and after X iterations is given by

~ .Y — X * Tt ±

The precision variation curve can be computed theoretically for all expressions in

loops which are polynomials of variables and constants. Since many scientific applica­

tions consist of such computations, theoretical analysis can be performed for all such

applications. It is to be noted however, that such an analysis is not entirely feasible for

floating point computations. But the analysis can be performed for integer and fixed

point data and computations. This does not limit the applicability of the analysis or the

algorithms we present later as many signal and image processing computations and sev­

eral benchmark problems operate on integer and fixed point data.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Precision Variation Curve

theoretical run-time

24
2
a
e
2
o
®
o.

200 400 10000 600 800

Iteration N um ber

Figure 6.4: Precision Variation Curves for RSQ using theoretical and run-time analysis

6.3.5 Run-time Analysis

Theoretical analysis of expressions in loops computes the upper bounds on the pre­

cision of the variables and computations. This determines the minimum precision re­

quired to represent these variables. The estimates using theoretical analysis are conser­

vative and can usually be much higher than the actual precision of the operands. For

example, using the above analysis for the Fibonacci series X, = .Y,_i + .V1_2, we ob­

tain ttx, = i — 1 and hence, 7Ta' 15 = 14. But, A\ 5 = 610 which needs only 10 bits. Even

in the case when the bound is actually tight for expressions, the actual precision might

be lower than theoretical estimate. This can occur when the data inputs are assumed to

have maximum precision, but are actually randomly distributed over the complete input

range.

For example, consider the code segment shown in Figure 6.3. We performed simu­

lations with uniformly distributed random values for the 8 -bit non-negative data inputs

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

X D I F F and Y D I F F . The precision of the RSQ variable was measured by tracing

the earliest iteration in which a new higher significant bit was set. Since the maximum

bits in the result of X D IF F{ /,«/)* Y D I F F { /, J) are 16, the iteration in which the kth

most significant bit of the result is set is given by 2fc-16. The precision variation curves

obtained using the theoretical and run-time analysis are plotted in Figure 6.4. The ac­

tual precision required for the computations is significantly lower than the theoretical

estimate as evident from the graph.

This run-time measurements illustrate a very important advantage in exploiting vari­

able precision computations. The actual X D I F F and Y D I F F values have signifi­

cantly lower precision than the maximum possible precision of 8 bits. The assumption

of maximum precision for all the input X D I F F and Y D I F F values has a rolling effect

on precision of other operands and operations. The repeated accumulation of the prod­

uct of these numbers results in a precision difference in the final values which is much

larger than the precision difference for one value. It is clearly revealed in simulations

where the actual required precision is much lower than the theoretical precision.

For computations which do not have a tight bound on the precision and for compu­

tations with complex control flow, computing the required precision by using run-time

statistics is a viable alternative. The application can be instrumented to measure the pre­

cision of the different variables and the knowledge can be utilized by the mapping tool

or the compiler to identify the required precision at various program points. Though

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

we do not address the run-time mapping issues in this thesis, it is also possible to deter­

mine the precision of the operands and the operations by examining the values at run­

time and modifying the precision of the operations on the fly. In this thesis, we focus

on run-time precision management based on the knowledge of the required precision at

compile(mapping) time. The required precision can either be analyzed automatically or

can be user specified.

6.3.6 Dynamic Precision Management

Given the precision variation curve for the loop, we need to determine the mapping of

the iterations to a set of configurations which are used to execute the operations in the

loop. For each iteration, the precision of the corresponding configuration which exe­

cutes the iteration should be equal to or greater than the required precision for that it­

eration. But, reconfiguring the hardware whenever the required precision changes can

result in significant reconfiguration overheads. For architectures in which the reconfig­

uration times are much higher than the execution times, the reconfiguration overhead

might be prohibitive. Thus, it is necessary to identify the optimal set of configurations

which result in minimization of the overall execution cost, including the reconfigura­

tion cost. Also, the set of configurations which are available for executing an operation

might not encompass all the possible precision values that are required. Some of the op­

erations will have to be executed with more precision than is necessary in the absence

of configurations with the exact precision.

1 1 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

We present the Precision Management Problem and the Dynamic Precision Man­

agement Algorithm based on the following assumptions:

• Higher precision computations require more resources such as power, logic area

and computation tim ef^).

• The required precision for the computations varies monotonically. This is true for

most computations which accumulate values as the loop iterations progress. The

algorithms we describe can be applied to monotonic subsequences with optimal

schedules for each subsequence individually.

• The algorithm determines the optimal schedule for a given precision variation

curve. When the actual variation is different from the precision variation curve,

the schedule might not be optimal.

6.3.7 Precision Management Problem (PMP)

Input: An operation in a loop with N iterations of the loop body and the precision vari­

ation curve for the operation. The precision variation curve for a given operation or

operand in a loop computation is the sequence (77,, c>,), 1 < i< L 77, denotes the iteration

number at which a change in precision takes place due to the computation. 77, < N

where N is the total number of iterations. <£,■ denotes the precision required for per­

forming iterations 77, to 77,+1 — 1 for 1 < i < I and 4>e denotes the precision required for

performing iterations r/e to N.

I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Output: An optimal schedule of configurations a =<9j,aj>, where 1 <j<£. For

\< j<£, ctj is the configuration used for iterations d j . ..9j+\ - 1 and at is the configu­

ration used for iterations 9J+l to N.

A schedule a is said to be valid if it satisfies the precision requirement for all the itera­

tions of the loop, i.e.,

\tk s . t. I < k < N , if

~i = fo r some i s . t . 77; < k < ql+l

tt0 = tt<7} fo r some j s . t . 9} < k < 0j+i

then TTj < 7t0.

An optimal schedule has the minimum total execution cost E which includes the recon­

figuration cost among all valid schedules. The cost of a schedule is given by

t
E = O0J+1 - 9j) x ^ + n j - u]

j= 1

where taj is time for executing one iteration of the loop in configuration aj and Ttj-ij

is the reconfiguration cost between configurations Oj_j and ar O

To minimize the total execution cost, both the execution cost and the reconfiguration

cost have to be examined. The set of configurations and the schedule of reconfigurations

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

need to be determined. We first show that the points of reconfiguration are the subset

of the points where the required precision changes, i.e., 0 C 77, where 6 = { A ,. . . , 9e}

and 77 = {j]u ...,rie}.

Lemma 2 Given the definitions in the PMP problem, the schedule o o f configurations

satisfies the property 9 Q tj.

Proof: Assume that 6 % 77 in the optimal schedule a. Then there exists at least one

point of reconfiguration which is not a point of change of required precision.

3/ : 0{ £ tj

Without loss of generality,

: 0< - 1 < t]j- 1 < < Vj < 9i+ 1

Consider the schedule o' where the configurations are the same as o but the reconfigu­

ration points are different:

O = \0 \ . . .

O — \9\ . . . 0,_i7/j#{+i#i+2 • • • 9t\

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The cost of executing one iteration in configuration cr, is t ai. Since we assume preci­

sion variation to be monotonic, tt0i+1 > ir„x and t„tJrX > ta>. The difference in execution

cost of the two schedules is

a ' - a = { t e X m ~ 0 i - \) + k1+l(0;+i - 7j))

— 0i- \) + tax+l{0i+i — 0{))

= L<r, (Uj ~~ ~ + ^ ‘- 1)

+ /<TI+I (̂ i+1 _ Vj — &i+1 + Qi)

= (t„t - tal+l)(rjj - 0 i)

< 0

Since rjj>0i and t„t <<eri+l, cr' — cr<0. The new schedule has lower cost and hence a

schedule with reconfiguration points which is the subset of the precision change points

has lower execution cost. Since a is the optimal schedule our assumption must be in­

correct. Hence, 0 C rj. Q

To determine the choice of configuration at each 77,, we can use a greedy approach

where the best configuration with the required precision is chosen at each 77,. The best

configuration ^(cr, e Ci , . . . ,Cm) is given by the configuration which has the lowest

execution cost t Cj. But the greedy algorithm will not provide the optimal solution due

to two reasons:

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• The greedy approach does not consider the reconfiguration costs which are in­

curred at future reconfiguration points. A configuration with higher execution

cost might have a lower reconfiguration cost at the next step, making it a better

choice for executing the given iterations.

• With significant reconfiguration costs, it is possible that we use a higher precision

configuration than required(even if exact precision configuration is available in

C), to avoid a reconfiguration step in future. The greedy approach does not con­

sider this case and thus can result in non-optimal schedule.

6.3.8 Precision Management Algorithms

To determine the choice of configuration at each Li, we can use a greedy approach where

the best configuration with the required precision is chosen at each L,. The best config­

uration Cj(Cj € C i , . . . , Cm) is given by the configuration which has the lowest execu­

tion cost tcj ■ But the greedy algorithm will not provide the optimal solution due to two

reasons:

• The greedy approach does not consider the reconfiguration costs which are in­

curred at future reconfiguration points. A configuration with higher execution

cost might have a lower reconfiguration cost at the next step, making it a better

choice for executing the given iterations.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• With significant reconfiguration costs, it is possible that we use a higher precision

configuration than required(even if exact precision configuration is available in

C), to avoid a reconfiguration step in future. The greedy approach does not con­

sider this case and thus can result in non-optimal schedule.

In the following, we present an algorithm based on dynamic programming which

computes an optimal schedule having the minimum execution cost including the recon­

figuration cost.

Dynamic Precision M anagement Algorithm (DPMA)

Given the Precision Management Problem we can use Theorem 2 from previous sec­

tion and the above Lemma 2 to solve the problem. The configuration in the optimal

schedule changes only when the required precision changes according to Lemma 2. We

define Tt as the task executing iterations //, to 77,+i — 1. Given this task definitions and

the set of configurations C with different precisions, we can use Theorem 2 to compute

the optimal schedule.

Theorem 4 The optimal schedule a for the PMP problem can be computed in 0(£m2)

time where t is the number o f points in the precision variation curve and m is the number

o f configurations in the set C.

Proof. We can use dynamic programming to compute the E,j values for the schedule c

as described in Theorem 2. Computing one value takes O(m) time since there are

m configurations. The total number of values to be computed is 0{tm) , therefore the

total time complexity of the algorithm is 0 {tm2). O

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

6.3.9 An Dlustrative Example

We illustrate our approach by mapping the multiplication operation from the example

code segment presented in Figure 6.3.

DO 10 1=1,N

10 VIRTXY = VIRTXY + MAXQ * SCALE (I)

Figure 6.5: Multiplication operation from sample code

The input data SC'ALE(I) is an 8 -bit integer. The precision of M A X Q has been

analyzed in Section 6.3.5. We present the same result in the form of a table in Table 6.2.

Table 6.2: Theoretical and simulated iteration numbers for N = 1024

Pi Li L\ Pi Li L\
Pr Theore­ Simu­ Pr Theore­ Simu­

tical lated tical lated
16 1 1 2 2 64 195
17 2 2 23 128 412
18 4 5 24 256 897
19 8 14 25 512 -

2 0 16 35 26 1024 -

21 32 87

We have abstracted the Xilinx XC6200 series device by using our model. The pa­

rameters specified are for the HySAM model and have been evaluated from XC6200

documentation [82, 57]. The footprint of each precision is given by the equation 4 x

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 6.3: HySAM model parameters for XC6200 multiplier configurations

Configuration
C i

Precision
P r (C i)

Time
tc, (n s)

Reconfig.
R o i (n s)

c , 8 x 8 140 5120
c 2 8 x 16 250 10240
C i 8 x 2 0 300 12800
c A 8 x 24 400 15360
C s 8 x 28 520 17920
c 6 8 x 32* *640 20480

row x col, where row and col are the precisions of the two inputs. For the configu­

rations relevant to mapping the given operation, row is 8 . Reconfiguration times are

based on a 32-bit data bus running at 50MHz. It is possible to design modular configu­

rations which can be reconfigured in lesser time using partial reconfiguration. For this

mapping, we assumed that complete reconfiguration is needed for each configuration.

The parameters for various multiplier configurations with different precisions are listed

in Table 6.3.

We measured the total execution time for the loop computations using five different

approaches. The first two approaches do not exploit the dynamic precision by varying

the precision of the operation at run-time. The different approaches and the schedule of

configurations(<Qj,Cj>) in each approach are described below.

• Raw: The first approach uses a static configuration of Sbit x 32bit precision for

all the iterations of the loop.

Schedule: <l,Ce>

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• Static: We utilize the theoretical analysis where we determine that the highest

precision required for 1024 iterations is only 8 bit x '28bit. But the configuration

is still static and is used for all the iterations.

Schedule: < l,C s>

• Greedy: We used the greedy algorithm (see Section 6.3) to compute the schedule

of configurations to be utilized for the computations. The precision of the opera­

tion is varied dynamically but the greedy choice is based on the lowest execution

time for each configuration.

Schedule: <1,C2>,<2,C 3>,<32,C4>,<512,C'5>

• DPMA: Our dynamic precision management algorithm was utilized to compute

the optimal schedule using the precision variation curve. This approach uses higher

execution cost configurations for some of the computations but reduces the over­

all execution cost by performing lesser number of reconfigurations.

Schedule: <1,C4>,<512,C5>

• DPMA-run: In this approach we performed run-time analysis of the loop and uti­

lized the precision variation curve from the run-time analysis as the input to the

algorithm. This approach can be implemented easily by adding a run-time check

of the precision, which needs very small amount of additional logic and no ex­

tra clock-cycles if the precision remains within the run-time statistics. Schedule:

<1 ,C4>

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 6.4: Execution times using different approaches

Algorithm Execution Reconfiguration Total
Time (ns) Time (ns) (ns)

Raw 655360 20480 675840
Static 532480 17920 550400

Greedy 468010 56320 524330
DPMA 471160 33280 504440

DPMA-run 409600 15360 424960

The execution times including the reconfiguration times are summarized in Table 6.4.

The approaches using dynamic precision achieve significantly lower execution times

compared to the Raw and Static approaches. We noticed that our DPMA algorithm ex­

ecuted all the iterations of the loop in the minimum time for the theoretical and run-time

precision variation curves. The DPMA-run achieves significant speed-up by exploiting

the fact that 28-bit precision is never required.

6.3.10 Application

The dynamic precision management framework gives rise to a wealth of issues which

can potentially provide enormous benefits to mapping computations onto configurable

hardware. Bit-serial and digit-serial computations are one class of computations which

can exploit dynamic precision without large overheads. The control component of the

design needs to execute the configurations for a variable number of steps based on the

required precision. Run-time precision management where the control modifies the pre­

cision of the computations are being explored. Configurable logic can be utilized to

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

execute multiple iterations of loops in parallel in the absence of dependencies. Reduc­

tion of the logic resources due to dynamic precision management can be exploited to

execute more number of iterations in parallel. Multi-context devices and configuration

caches can be utilized to reduce the reconfiguration overheads by storing variable pre­

cision configurations.

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 7

Mapping onto Reconfigurable

Pipelines

One does not learn computing by using a calculator, but one can forget

arithmetic.

- Alan Perlis

Pipelining and parallelizing are the two main techniques employed to exploit recon­

figurable hardware. Pipelined designs are well structured and map well onto config­

urable devices. The repetitive computations in loops can be pipelined by generating a

configurable pipelined datapath for the loop body or the inner loop and mapping onto the

multiple functional units in reconfigurable architectures. In this chapter we address two

different variations of the problem of mapping the application onto pipelined designs.

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The first problem that we address considers loop computations with loop carried de­

pendencies that have low throughput using existing design techniques. We develop in­

tegrated mapping technique that exploits the distributed memory of the reconfigurable

logic to dynamically switch data contexts. The data context switching results in inter­

leaved execution of multiple iterations of the loops providing high throughput in spite

of the presence of loop carried dependencies. For this problem we assume that the re­

configurable logic has enough resources to map the complete inner loop body onto the

reconfigurable logic.

The second problem relaxes some of the assumptions made above and considers re­

configurable logic and memory resource constraints and also considers graph structured

dependencies between the tasks in the loop body. The reconfigurable logic resource con­

straint imposes reconfiguration steps between computation stages. We develop the ap­

proach of pipeline segmentation and pipeline construction to minimize the reconfigu­

ration overheads to address this problem. Heuristic techniques are utilized to construct

multiple pipeline segments that are executed one after another with reconfiguration steps

between every two computation segments.

7.1 Mapping Nested Loops

Loops with simple control and no data dependencies between different iterations of the

loop are easy to compile / synthesize for high performance on a variety of architectures.

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

In this section, we focus on mapping nested loops that have dependencies. These de­

pendencies do not permit existing parallelization techniques to be applied. The depen­

dencies in such computations limit the throughput of the pipelined computations. Some

examples of such loops are Infinite Impulse Response (HR) Filters and adaptive filters.

We will use the HR as a motivating example in the remainder of the section.

We developed an approach to map nested loops by using a combination of pipelin­

ing, parallelization and our proposed optimization - data context switching. Each iter­

ation of the outermost loop in the computations defines a data context. Data context

switching interleaves the execution of the iterations of the loops. The inner loops of the

nested loop are pipelined to map onto the multiple functional units of the reconfigurable

architecture. To operate at a high frequency, each pipeline stage has inherent delays due

to pipeline registers. The data dependency in the inner loop reduces the throughput that

can be achieved due to the inherent pipeline delays. We use embedded memory blocks in

the architecture to parallelize the outer loop of the computation to increase the through­

put. The resulting designs have the optimal throughput of one output per cycle, utiliz­

ing reduced hardware. The mapping scales with the number of loop iterations and the

amount of hardware resources. We compare the performance benefits of experimental

mappings using our approach with performance that can be achieved on state-of-the-art

microprocessors and DSPs.

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

We apply the data context switching technique to two diverse reconfigurable archi­

tectures. The Virtex FPGA [83] from Xilinx represents a state-of-the-art fine-grain re­

configurable architecture. The main functional units are composed using fine-grain 4-

input Look Up Tables (LUTs). Chameleon System’s Reconfigurable Communications

Processor (RCP) represents a high-performance system on a chip with coarse-grain re­

configurable architecture. The CS2000 series architecture of the RCP family combines

a 32-bit RISC CPU, proprietary Reconfigurable Processing Fabric (RPF), embedded pe­

ripheral cores, high performance system bus, and a programmable bank of I/O pins. The

Reconfigurable Processing Fabric is a matrix of coarse grained 32-bit functional units

that communicate using a rich hierarchical interconnection network.

7.1.1 Parallelizing Nested DSP Loops

In this section, we focus on the parallelization and pipelining of nested loop computa­

tions that have loop carried dependencies. We relax one of the conditions that we dis­

cussed in the previous chapter. In this section we permit the loop to have loop carried

dependencies. The class of loops that we consider is large but is limited to regular loops

which have the following characteristics:

• Loops with predetermined iteration count.

• Loops without pointer operations and pointer arithmetic.

• Loops with loop-carried dependencies in the inner loops and no loop-carried de­

pendencies in the outermost loop.

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

There are a large number of application loops which satisfy these criteria. Many

loops which do not satisfy these criteria can be converted to this form by rewriting with­

out pointers and by using various loop transformations such as normalization, permuta­

tion, among others [81]. Such loops occur in several classes of applications including

signal processing. An example of such a computation is an Infinite Impulse Response

(IIR) filter:

y(n) = cio * x (n) - * y(n - k)

The code for computing one sample of this IIR filter is given below:

f o r k= l to 10 do

sum = sum + a [k] * y [- k] ;

endfo r

y [0] = a [0] * x [0] - sum;

The input data required for the computation is a[0],. . . , a [10] (constants for the fil­

ter), y [- 1 0] , . . . , t/[— 1] (history or memory of the filter) and x[0] (sampled waveform).

In typical signal processing applications, this filter is executed for a frame (a speci­

fied set of samples such as 80) and for a large number of channels (e.g. 100). The filter

coefficients are different for each channel and the sampled waveform is different for

each channel. The complete code where the i loop denotes different channels is given

below:

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

for i=l to 100 do

for j=l to 80 do

sum = 0;

for k=l to 10 do

SI: sum = sum + a [i,k]*y[i , j-k-1] ;

endfor

S2: y[i,j] = a[i,0] * x[i,j] - sum;

endfor

endfor

In the following sections, we show how such loops can be mapped onto reconfig­

urable architectures by using pipelining and data context switching. The source code

for the example will be used as a running example to illustrate our techniques.

7.1.2 Pipelining

In the first phase, the inner loops are transformed into a pipelined datapath. The datapath

is constructed for the body of the innermost loop. In the absence of loop-carried depen­

dencies, the loop will have a data flow graph with no cycles. The single stage datapath

for the example computation is shown in Figure 7.1. The single stage datapath itself can

have internal pipeline registers and internal pipeline delay. This delay is referred to as

the single stage pipeline delay, 5. The example shows a datapath with a delay of two.

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

a[i,k]

REG

R Sum

Figure 7.1: Mapping of loop body to one stage

The innermost loop is unrolled to generate the pipelined datapath for loops with

feedback. The depth of the pipeline is the number of iterations of the innermost loop.

As shown in Figure 7.2, unrolling the example results in a depth of ten stages. If there

was no loop-carried dependency in the j loop then this pipeline can be mapped and ex­

ecuted on the hardware to generate results at a throughput of one output/cycle. But, the

loop-carried dependency results in a feedback path from the last stage of the pipeline to

the first stage. This feedback path and the multiplexer to accommodate the selection of

the feedback and the input are shown in Figure 7.2.

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ylU-k-l]

\ Z Z 7

l a f c l j

0 ~ *

a[i a] a[i,10]
x[ij] a[i,0]

sg isn g

y[ij]

Figure 7.2: Pipelined datapath of all ten stages

7.1.3 Limitations on the Throughput

In the sample code, statement Si has a loop-carried dependency due to the feedback.

This can observed based on the transitive dependency property. Consider the execution

of the 5,1'12’1.

£rl,12.l . i . r»l-< and b2 -<l . i l , - C l , 11,10 . c 1’12’1 C 1’11’10S i -< SI'

There is a loop-carried dependency in the j loop. Each pipeline stage has inherent

delay buffers (registers) to satisfy timing constraints of the functional units and the rout­

ing. The design operates at a much lower frequency without these delay buffers. A new

sample cannot be fed into the pipeline every cycle due to this dependency. Hence, the

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

throughput of the pipeline reduces to the delay of each pipeline stage. Also, the outer­

most loop (t loop) will have to be executed sequentially after finishing the complete j

loop. The computation cannot be interleaved due to the loop-carried dependency.

Let 8 denote the pipeline stage delay and N r denote the number of iterations of the

iterations of the r loop (r e { i . j . k }) . The throughput of the pipeline is | and total time

to execute the loop in number of cycles is given by

T pipe = S * (N fc 4 - N j) * Ni

On typical DSP engines and microprocessors, loop transformation does not provide

any performance benefits. Loop unrolling of the k loop can provide additional instruc­

tions in the basic block for more Instruction Level Parallelism (ILP). But, the memory

bandwidth required for executing each computation. Si, limits the performance even if

there are multiple functional units. Simple mapping onto reconfigurable architectures

will also face similar limitations in spite of multiple functional units.

Loop interchange of the i and j loop only increases the memory bandwidth require­

ments. The intermediate values computed for each frame will have to be stored and

fetched later from memory. In the following section, we address the throughput im­

provement of the pipeline by using a loop interchange transformation and interleaving.

But, unlike DSPs and microprocessors, reconfigurable architectures possess embedded

memory blocks. This embedded memory is utilized to perform data context switching

to eliminate the memory bandwidth problem.

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

7.1.4 Data Context Switching (DCS)

The outermost loop (i loop) in the example does not have any loop-carried dependen­

cies. Using the pipelined datapath, the outermost loop can be executed sequentially. The

loop can be parallelized by replicating the hardware mapping and executing a subset of

the iterations on each replicated pipeline. But, there is a limit on the hardware resources

that are available on most reconfigurable architectures, including Virtex and Chameleon

RPF. We developed an alternate technique to improve the throughput of the pipelined

datapath - data context switching.

Each iteration of the outermost loop defines a different data context. Each data con­

text differs in the data inputs and constants that are used in the computation. In the exam­

ple computation, each context differs in the x and y input data and the filter coefficients

a. By using data context memories, we simulate multiple versions of the pipeline com­

puting on distinct data sets. Figure 7.3 and Figure 7.4 show the differences in the data

flow in the two approaches. In the data context switching approach, the computational

units are switching between a different data context each cycle.

Data context switching uses the embedded and distributed local memory to store

the context information and retrieve it at appropriate cycles in the computation. Data

context switching is achieved by using four steps:

• Rescheduling the input data flow.

• Storing the constant data in distributed local memories.

• Inserting data context memories in each pipeline stage.

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Channel 1 1 1 2 1 3 80
Channel 2
Channel 3

Time

Figure 7.3: Dataflow in original design

Channel 1

Channel 2

Channel 3

Channel 100

Feedback Data

L L

Time

Figure 7.4: Dataflow in dynamic context switching

• Balancing the feedback path delay.

Rescheduling input data: The pipelined design in the previous section computes the

full frame (j loop) for one channel (i loop) at a time. In our data context switching ap­

proach we compute one sample of each channel at a time. This interleaves the execution

of the iterations of the outermost loop (i loop) with the execution of the j loop. In con­

ventional architectures this increases the memory bandwidth requirements. In recon­

figurable architectures, the inherent pipeline registers in each stage and the data context

memories are utilized to store intermediate results. The inherent pipeline delays in each

stage are exploited to switch the data context on which the pipeline is operating in each

cycle.

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 7.3 shows the input data arriving at the first stage in the pipeline in existing

pipelined design. Figure 7.4 shows the input data arriving at the first stage in our dy­

namic context switching approach.

On the Chameleon architecture, the data can be manipulated in the external memory

by the ARC processor. The data can be streamed through the programmable I/O (PIO)

pins in Chameleon. The data can also be fetched into the on-chip local memory (RAMs

in Virtex and LSMs in Chameleon) and rescheduled by addressing the data in a different

order.

Memories for constants: The constants used in computations of all the outer loop itera­

tions (such as filter coefficients) are stored in local on-chip memories. This necessitates

additional logic for addressing the local memories and accessing the correct constants

for each operation in each stage. Since these are in local distributed memories, they can

be updated by using distributed computational units. This can be exploited for compu­

tations in which the constants change, such as adaptive filters.

This memory for constants is shown in Figure 7.5. A context index counter is uti­

lized to extract the correct constants for each step of the computation as shown in the

figure.

Data context memories: At any cycle in the computation, the corresponding functional

unit in each pipeline stage operates on the same data context (iteration of outermost

loop). The intermediate results flow through the pipeline stage and arrive at the next

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

stage in the pipeline after a delay 8. To compute on the same data context in the corre­

sponding functional unit in each stage, this pipeline stage delay should equal the number

of contexts that are being computed. To match these, we introduce distributed memories

as FIFO buffers which store the context information in each pipeline stage. The re-timed

data flow ensures that the correct constants and input operands for each context appear

at the inputs of each functional unit in the pipeline.

The resulting datapath of one pipeline stage after applying the data context switch­

ing optimization is shown in Figure 7.5. The single pipeline stage shows how the data

context information is distributed throughout the single stage.

Balancing delay paths: The re-timing of each pipeline stage results in the feedback

data arriving at a wrong data context. Delay buffers need to be inserted in the feed­

back path to balance the two datapaths. The size of the delay buffer in the feedback is

the difference in the pipeline stage delay (6) and the delay in the computations in the j

loop (multiply and subtract in the example). When data context switching is used, the

pipeline stage delay, 8, is equal to the number of contexts.

Figure 7.4 shows how the appropriate feedback data for a specific channel has to

arrive at a specific time in the data flow. When the multiplier in the first stage needs

to compute using sample 2 from channel 1, the intermediate feedback result for that

specific channel should be available on the feedback path shown in Figure 7.2. This is

illustrated in the dataflow diagram in Figure 7.4.

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The context memories or the delay buffers can be implemented at a low cost on the

Chameleon RPF by using the LSMs. The LSMs are used to store the intermediate re­

sults. By using a difference of d + 1 in the read and write addresses into the LSMs, a

FIFO of size d can be implemented. The extra cycle is the inherent turnaround delay for

reading and writing into the same location in the LSM.

Context 1

Context
Index Counter

Contexts 1 to 100

Context 2 REG

Context 3

w V s V v \ \ \ vs . \

Next Stage
' v n \ \ s vW x V W \ \ \ V

Contexts 4 to 100

Figure 7.5: Optimized datapath for one stage

The latency of the pipeline increases to JV* * iV, but the total number of computation

cycles becomes:

T dcs = (N k + N j) * ^

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The speedup achieved for executing all the iterations of the loops using data context

switching is 8. On the Chameleon RPF, the most aggressive pipelined design has a 8

of 6. In typical reconfigurable hardware (such as Virtex FPGAs) implementations 8 is

usually much higher due to pipelined functional units with several stages (such as 5-

stage pipelined multiplier).

7.1.5 DSP/Microprocessor Implementations

The instruction schedule that can be obtained on a RISC or DSP processor is limited by

the bandwidth that can be achieved from memory/registers. The number of data values

operated on in the nested loop computation make it difficult to store all values in regis­

ters. The filter coefficients in the example computation are the values typically expected

to be available in registers. If the innermost loop body is mapped onto a schedule of de­

lay Tbody then the computation on a DSP or microprocessor will run in the following

number of cycles:

T d s p = T b o d y * N k * N j * N i

where Nt,Nj, and JV* denote the number of iterations of the i,j and k loop respec­

tively. On a microprocessor the example loop body can take up to 20 cycles to execute.

Reconfigurable architectures attain considerable speedup over DSPs and microproces­

sors as evident from the number of cycles.

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

7.1.6 Performance Summary

The analytical performance measures for the different approaches are summarized in

Table 7.1.

Table 7.1: Analytical performance summary

Approach Value Cycles
Pipelined

DCS
DSP/Microprocessor

T ptpe

Tdcs
Td.,P

S * (N k + N j) * N i

(N , + N j) * N i

Tbody * N k * N j * Ari

7.1.7 Performance Results

We performed experiments on various platforms to validate the performance benefits of

data context switching. The example DSP nested loop is an Infinite Impulse Response

(HR) filter that occurs in several signal processing applications including the Voice over

IP (VoIP) standards. A 10-stage HR filter is the speech synthesis filter in the G.729

vocoder standard for voice compression. This synthesis filter is a significant component

of the computations in both compression and decompression in the G.729 standard.

We mapped the nested loop onto different architectures to obtain performance re­

sults. The example DSP nested loop is generic enough in computational structure to

reflect the performance benefits that can be achieved for a large class of computations.

We compare the performance of our approach by mapping using the standard pipeline

approach and our data context switching approach. The basic features of the architec­

tures that we utilized for mapping are outlined in Table 7.2. The Virtex timings are de­

pendent on the design.

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 7.2: Platform characteristics
Platform Frequency

(MHz)
Cycle

Time (ns)
UltraSPARC-II

DSPC62x
Chameleon

Virtex

400
300
125

up to 200

2.5
3.33

8
up to 5ns

Table 7.3: Performance Results and Speedups

Platform Approach Cycles Speedup
(in cycles)

Time
{usee)

Speedup
(in time)

UltraSPARC-II 800000 1.0 2000 1.0
DSP 200000 4.0 660 3.0

Virtex Standard 81000 9.8 1426 1.4
Virtex DCS 9000 88.9 158 12.7

Chameleon Standard 54000 14.8 432 4.6
Chameleon DCS 9000 88.9 72 27.8
Chameleon DCS+Double 4500 177.8 36 55.6

Table 7.3 shows the performance of various architectures and the different mapping

techniques on the reconfigurable architectures. The results marked as DCS indicate the

results obtained using data context switching. The base case for comparing the speedup

is the UltraSPARC-II implementation.

The exact cycle counts of the applications on the microprocessor and DSP are based

on estimates. The code was compiled using the standard tools to obtain the estimates.

The basic loop body timing, 7&0<fy, for the microprocessor and DSP is 10 and 2 cycles,

respectively. This was obtained based on the most aggressive scheduling of the instruc­

tions. Memory bandwidth and cache effects on microprocessors were not considered

and can only decrease the performance of the microprocessor and DSP.

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The mapped design on the Virtex had a pipeline single stage delay of 9 cycles. The

design runs at 56.7MHz on a -6 speed grade part which is the fastest Xilinx device. The

local memory blocks were implemented as a combination of distributed logic cells and

the BlockRAM available on the Virtex. This was necessary to balance the usage of the

BlockRAM and the distributed memory. A design using only BlockRAMs would fit

only on the largest Virtex device, V1000. On a V600 device, 91% of the BlockRAMs

and 43% of the logic cells are utilized by combining distributed RAMs and BlockRAMs.

The Chameleon implementation was developed using the C~SIDE software tools [72].

Two stages of the pipeline (with one multiply-accumulate each) are mapped onto one

tile achieving maximum tile usage. The complete design was mapped onto two slices

of the Chameleon chip. The design uses 50% of the DPUs and 31% of the LSM mem­

ories. The control FSM is simple and is the same for each pipeline stage. Two versions

of the design can be mapped onto the Chameleon chip with the available reconfigurable

resources. These can operate in parallel to achieve twice the speedup. This speedup is

reflected in the last row (DCS+Double) in Table 7.3.

Using standard pipelining approach on reconfigurable architectures, we obtain speedup

of 4.6 over UltraSPARC-II. Using our dynamic context switching (DCS) approach, we

obtain speedup of up to 27.8 over UltraSPARC-II implementation in actual execution

timings (in spite of lower clock speed). The optimized Chameleon mapping achieves

a speedup of 9.2 over state-of-the-art DSP architecture which is extensively optimized

for such nested loops. By fully utilizing the resources and using two duplicate versions

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

of the mapping, it is possible to further improve the performance by a factor of 2. This

is illustrated in the last row (DCS+Double) of Table 7.3. Chameleon chip can achieve

a speedup of 55.6 over UltraSPARC-II implementation.

The results indicate that reconfigurable architectures can achieve impressive speedups

over microprocessors by exploiting the reconfigurable logic resources. Our novel data

context switching approach can significantly enhance the speedup that can be obtained

on reconfigurable architectures by exploiting the distributed memory resources. The

class of signal processing computations we considered are word-oriented. Chameleon

architecture has coarse-grain functional units and performs better than Virtex architec­

ture for such signal processing applications.

7.2 Reconfiguring Pipelines

The speed-up that can be obtained by using configurable logic increases as the computa­

tions in a loop increase. But, the configurable resources that are available can be lower

than the required resources to pipeline all the computations in the loop. In this case,

the pipeline has to be segmented to run some of the pipeline stages and reconfigured to

execute the remaining computations.

In this section, we consider loops which do not have loop carried dependencies.

Such loops do not have any dependencies between different iterations of the loop. Loop

transformations can be applied to remove some existing loop carried dependencies. We

also assume that the number of iterations to be executed is significantly larger than the

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

number of pipeline stages. Hence, the cycles involved in filling and emptying the pipeline

are insignificant compared to the actual execution cycles of the pipeline stages.

The execution of the complete loop can be decomposed into multiple segments, where

a fixed number of iterations of each segment are executed in sequence starting from the

first segment. Each segment consists of multiple pipeline stages. The logic is recon­

figured after each segment to execute the next segment. The intermediate results from

each segment execution are stored in memory. The execution of the sequence of seg­

ments is repeated until the required number of iterations of the loop are completed. We

assume that the reconfiguration of the different segments is controlled by an external

controller(e.g. a host processor).

7.2.1 Definitions

Reconfigurable Logic Memory HySAM model defines the memory available in the

system as M . In this section, we assume that the intermediate memory denotes the

memory available in the reconfigurable logic portion of the architecture.

Input Task Specification A dependency graph G'(V, E) of the application tasks of the

loop to be executed for N iterations. Each task node t\ denotes the operation to be per­

formed on the inputs specified by the incoming edges to the node. The directed edge eXJ

from Vi to vj denotes the data dependency between the two nodes. The weight W{j on

each edge denotes the number of bits of data communicated between the nodes.

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Output Pipeline Configuration A sequence a of pipeline segments <j\ , <r2, . . . , av where

each segment <7,(1 < i < p) consists of q number of stages 2 >---,5 ,,. Thepipeline

stages are the mapping of the computational task nodes V to configurations of the de­

vice. Each of the stages s,j is the configuration which executes a specific task in the

input task graph. The size of a pipeline stage is given by the length and the width

and wtJ.

Segment Clock Speed Each pipeline segment a, can be executed at a different clock

speed depending on the maximum clock speed at which the stages in that segment

can operate.

Segment Data O utput A pipeline stage Sij has global outputs if any of the outgoing

edges from a task node are to a node that is not mapped to the same pipeline segment.

The size of the segment data output £>0,(1 < « </>) of all the pipeline stages in a

segment <r,(1 < i < p) is given by the sum of all the global outputs of the stages in the

segment.

Segment Iteration Count The number of iterations Na for which each pipeline segment

is executed before reconfiguring to execute the next segment. Na depends on the size

of the available memory to store the intermediate results. We assume that the initial and

final results are communicated from/to external memory.

N' = m m ' { DOi + D 0 ;+I }

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Reconfiguration Cost The reconfiguration cost Rioop is the total cost involved in recon­

figuring between all the segments of the pipeline configuration. This includes the cost

of configuring between the last segment and the first segment if N > Na. The recon­

figuration cost between any two segments is given by the difference in the two pipeline

configurations. Partial reconfiguration of the device in columns is assumed in our com­

putation. We use the number of logic columns in which the configurations are different

as the measure of the reconfiguration cost. When the corresponding stages in differ­

ent segments are dissimilar, the reconfiguration cost accounts for the multiple adjacent

stages that need to be reconfigured.

Total Execution Time The total execution time E is given by the sum of the execution

times for each segment and the total reconfiguration time.

1=1 J<7 , iV0-

7.2.2 Pre-processing and Mapping

In this phase the computation tasks in the input DAG are mapped onto components of

the given logic device. The components are chosen from the set of library components

available for executing the given application tasks in the task graph. Different compo­

nents can have different logic-area/execution-time tradeoffs and could potentially have

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

different degrees of pipelining and footprint on the device after layout. The library com­

ponent of the highest degree of pipelining which satisfies other constraints specified by

the task graph(such as precision of inputs) is chosen for a task.

Our proposed approach is illustrated using the mapping and scheduling of the N-

body simulation application and the FFT butterfly computation. The resulting task graphs

after this phase with the dependency edges are shown in Figure 7.6. In the graph the op­

erations are represented as A - Addition, M - Multiplication, S - Subtraction and Sh -

Shift right by 4 bits(Divide by 16). The operations in the graph are all 16 bits so the

weights on the edges are not indicated.

7.2.3 Partitioning

The partitioning phase generates multiple partitions where size of each partition is smaller

than the size of the device. This phase attempts to optimize two criterion - (1) maximize

the size of the partition (2) minimize the weight of the edges between partitions. The

first criterion improves the logic utilization and the second criterion reduces the memory

required to buffer intermediate results generated by each partition (pipeline segment).

A sketch of the partitioning algorithm is given below without the intricate details.

A heuristic based multi-way partitioning is used to incrementally generate each of

the partitions. The largest size node is chosen from among the list of Ready nodes

(whose inputs have been computed) to be added to the current partition. When no more

nodes can be added to the current partition, a new partition is initiated. For adding a

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Ready node u, to a partition 7r,, the heuristic uses the following sums o f weights o f

edges:

• u;t : weight o f in edges to u, from nodes in tt,

• u j 2 : weight o f in edges to vt from nodes not in t t j

• weight o f out edges from c, to nodes in ~ j

• u;.|: weight o f out edges from vt to neighbors o f K j

V k is a neighbor o f tt, if there is an edge from a node in ttj to V k and V k & tt,

• u.’5: weight o f out edges from u, to nodes not in ~ j and not neighbors o f t t j

The node chosen is the node with maximum value o f u,’i + u.'3+ u.’4 —u;2 —u,’5. The pri­

mary inputs and outputs are not considered in computing the weights. The largest node

which fits in the current partition satisfying the above condition is added to the current

partition. Ties are broken by using the height o f the node and the different weights o f

edges listed above. The resulting partitions are illustrated by the partition number on

the nodes o f the graph in Figure 7.6.

7.2.4 Routing Considerations

The algorithm for the partitioning o f the task graph assumes that there are enough rout­

ing resources to communicate between the different pipeline stages and from pipeline

stages to the memory. Som e o f the pipeline stages might have global inputs and out­

puts. These are data inputs and outputs which are not to adjacent pipeline stages, but

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 7.6: (a) N-body simulation task DAG and (b) FFT task DAG with partition num­
bers

from/to either non-adjacent stages or from/to memory. Some of the data outputs from

the pipeline stages might have to be buffered (using registers) before they are consumed

in the later stages.

Routing resources are an important consideration when mapping communication be­

tween non-adjacent pipeline stages. In our experiments we have discovered that FPGAs

such as Virtex [83] are routing and register rich and can support most pipeline-able de­

signs. The number of bits of data computed in each stage is typically less than or equal to

the number of logic cells utilized. Hence, the stage to stage communication has enough

routing resources by using nearest neighbor interconnect. Extra routing and logic re­

sources (for buffering and multiplexing) have to be utilized for data values communi­

cated across non-adjacent pipeline stages. In the partitioning algorithm, the remaining

area in a partition is reduced to reflect the buffering requirements.

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A limitation of our approach is that partitions might have bad memory performance

when the computation is highly irregular or there are a large number of data dependen­

cies in the DAG. The approximation of routing resources results in infeasible designs

in some cases. But, for most applications, the circuits were finally mapped within the

available logic and routing resources.

7.2.5 Pipeline Segmentation

The configuration of the pipeline is generated from the partitions that are computed in

the previous phase by the algorithm in Figure 7.7. Each partition is utilized to generate

one segment of the pipeline. The goal in the segmentation phase is to generate permu­

tations of the pipeline stages in each segment to reduce the reconfiguration costs across

segments. We use the heuristic of matching the corresponding stages of the different

pipeline segments. In each partition, the nodes of the same height have the flexibility of

being mapped in any order onto the pipeline. In addition, once a node has been mapped

onto the pipeline, its successors from the same partition can also be mapped.

The algorithm proceeds by first identifying the list of tasks from each partition that

are Ready to be scheduled. A task node is Ready if all of its predecessors have al­

ready been scheduled onto the segment. At the next step, a maximal matching set of

task nodes are identified from the set of all Ready lists from all Partitions. A max­

imal matching set corresponds to the task node which occurs in most partitions. This

step schedules similar nodes from different partitions onto the different segments. This

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 7.4: Schedules for N-body simulation (a) 50: Greedy Scheduling (b) 5/: Schedule
after segmentation

Segment 1 A M M A A
Segment 2 M A M A A
Segment 3 S A M * *

Segment 1 A M M A A
Segment 2 A M M A A
Segment 3 A S M * *

Table 7.5: Schedules for FFT (a) S0: Greedy Scheduling (b) S[i Schedule after seg­
mentation

Segment 1 M M M * *
Segment 2 M S A A A
Segment 3 S s * * *

Segment 1 M M S A S
Segment 2 M M A A S

enables the reduction in the reconfigurations costs at runtime. The Ready lists are up­

dated before scheduling the next set of nodes. The resulting pipeline schedules with the

different segments are shown in Table 7.4(b) and Table 7.5(b).

7.2.6 Performance Results

We evaluate the performance of our techniques by comparing them with a greedy heuris­

tic based on list scheduling. The greedy schedule chooses the largest available Ready

node as the next stage of the pipeline. A new pipeline segment is initiated when no

more nodes can be added to the current segment. The resulting schedule is shown in Ta­

ble 7.4(a) and Table 7.5(a). We utilize the modules and the parameters from the Virtex

component libraries [83]. Some of the modules utilized are tabulated below in Table 7.6.

The number of pipelined stages, precision of the inputs and the size of the module when

mapped onto the device are listed in the table.

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1: Function SegmentationG, Partition)
2: Vt’, : Mapped(ui) <— F A L S E
3: Num -Partitions <— \Partition\
4: repeat
5: for i' = 1 to i = Num .Partitions do
6: /?e«£/j/[i] <— {uj|L’j € Parfitionfi] and
7: Vi;* : t’t = Predecessor{vj) ant/ Mapped(vk)}
8: endfor
9: for i = 1 to i = N um .Partitions do
10: for all vj € Ready[i\ do
11: Count(Vj) <- YifLT-Partitims\{vk\Type(vk) = Type{v,) and
12: vk € Ready[l]}\
13: end for
14: end for
15: I'curr f— null
15: for i = 1 to i = Num .Partitions do
16: vsei = vj | vj € Ready[i\and'ivj : m ax {Count (1̂)} and v3 £ V^rr
17: if vsei = nu// then
18: vsei = uy | Vj € /2each/[i] andVvj : ma:r{Counf(i.>j)}
19: end if
20: 5e<7men£[i] <— Segment[i\ ® vsei
21: if vsei != null then
22. Vcurr f 1'curr U Vse[

23: Mapped(vsei) 4- TRU E
24: end if
25: end for
26: until (Vi: em pty{P artition[i\))

Figure 7.7: Algorithm to generate the pipeline segments

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 7.6: Virtex module characteristics
Module Stages Input Slices Speed
Add 1 16x16 10 173 MHz
Add 1 32x32 20 157 MHz
Subtract 1 16x16 11 141 MHz
Shift 1 16x16 10 180 MHz
Multiply 1 8x8 39 65 MHz
Multiply 4 8x8 48 131 MHz
Multiply 5 12x12 107 117 MHz
Multiply 5 16x16 168 115 MHz

Table 7.7: Reconfiguration costs in number of Virtex slices

Greedy Our Approach Speedup
N-body 624 228 2.74
FFT 702 110 6.38

For the N-body simulation and FFT examples, the number of slices to be reconfig­

ured for each schedule is shown in Table 7.7. This is the reconfiguration cost Rioop. The

heuristic based algorithms have a significant saving in the reconfiguration cost. This

translates to a direct reduction in the total execution time of the configuration. In the

worst case, our heuristic algorithms generate a schedule which is at least as good as the

greedy heuristic.

The total execution cost was computed for both the applications for a data set size

of 4096 data points with the an on-chip memory size of 2KB (M). For the two exam­

ple applications, reconfiguration cost is the dominant cost in the execution of the ap­

plication and constitutes more than 95% of the total execution time. The application

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

speedups are of the same order as the speedups in the reconfiguration costs illustrated

in Table 7.7. This shows that our heuristic based approach performs significantly better

than the greedy heuristic.

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 8

DRIVE Simulation Framework

The word simulation comes from simia, an ape.

- Dictionary

The general purpose computing area is the most promising to achieve significant per­

formance improvement for a wide spectrum of applications using reconfigurable hard­

ware. But, research in this area is hindered by the absence of appropriate techniques

and tools. Current design tools are based on ASIC CAD software and have multiple

layers of design abstractions which hinder high level optimizations based on reconfig­

urable system characteristics. It is also difficult to incorporate dynamic reconfiguration

into the current CAD tools framework. The performance of the hardware is limited by

the software tools which interact with the hardware. Hence, current CAD software is

one of the main bottlenecks in the acceptance of reconfigurable hardware as a general

purpose computing platform.

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The absence of mature design tools also impacts the simulation environments that

exist for studying reconfigurable systems and the benefits that they offer. Simulation

tools are a very important component of the design cycle. Simulations provide users

with practical feedback when developing applications and designing systems. This al­

lows the designer to determine the correctness and performance of a design before the

system is actually constructed. The user can explore the merits of alternative designs

without actually building the systems. Simulation tools provide a means to explore the

architecture and the design space in real time at a very low resource and time cost.

Current simulation tools for reconfigurable architectures are based on existing CAD

design flow and perform mapping of designs to low level hardware for simulation. Fur­

thermore, there are very few tools which provide any ability to study the dynamic behav­

ior of reconfigurable hardware. Most of the existing simulation environments are based

on simulation of High-level Description Language(HDL) or schematic designs that im­

plement an application. Existing frameworks are either based on simulation of HDL

based designs [7,48,51] or they are tightly coupled to specific architectures [17,44,52].

System level tools which analyze the interactions between various components of the

system such as memory and configurable logic are limited and are mostly tightly cou­

pled to specific system architectures. These tools do not permit evaluation of dynamic

architectures and designs. Even for static designs, the user needs to be both a software

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

designer and a hardware designer to perform the simulations using current tools. Bridg­

ing this semantic gap between the user and the hardware needs expertise in multiple do­

mains. This hinders the acceptance of reconfigurable hardware into the general purpose

computing area.

In this chapter we present a novel interpretive simulation and visualization environ­

ment based on modeling and module level mapping approach. The Dynamically

Reconfigurable systems Interpretive simulation and Visualization Environment (DRIVE)

can be utilized as a vehicle to study the system and application design space and perfor­

mance analysis. Reconfigurable hardware is characterized by using a high level parame­

terized model. Applications are analyzed to develop an abstract application task model.

Interpretive simulation measures the performance of the abstract application tasks on

the parameterized abstract system model. This is in contrast to simulating the exact be­

havior of the hardware by using HDL models of the hardware devices.

The DRIVE framework can be used to perform interactive analysis of the architec­

ture and design parameter space. Performance characteristics such as total execution

time, data access bandwidth characteristics and resource utilization can be studied us­

ing the DRIVE framework. The simulation effort and time are reduced and systems

and designs can be explored without time consuming low level implementations. Our

approach reduces the semantic gap between the application and the hardware and fa­

cilitates the performance analysis of reconfigurable hardware. Our approach also cap­

tures the simulation and visualization of dynamically reconfigurable architectures. We

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

have developed the Hybrid System Architecture Model(HySAM) of reconfigurable ar­

chitectures. This model is currently utilized by the framework to map applications to

a system model. We believe such an approach can be utilized to study reconfigurable

architectures and application performance and facilitate adoption of such architectures

by a larger spectrum of users.

8.1 Motivation

The software design tools for configurable computing are not keeping pace with the

hardware device technology. Increasing device capacity, complexity and features are

not translated into increased performance and productivity. This is because exploiting

the reconfiguration technology for applications entails expertise in multiple domains.

The user needs to understand low level device intricacies in addition to the application

characteristics. This limits the application of such expertise to a few highly specific ar­

chitectures and applications. Generalization of such expertise to other architecture do­

mains is currently infeasible. The space of such architecture and application variations

is too large for expansion of the expertise. The expertise that is developed is also re­

stricted to the specific user and tools do not exist to translate the expertise to a form

which can be utilized by others.

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The expert knowledge acquired can be in terms of design methodologies, reusable

components, algorithmic techniques etc. Tools which permit transfer of this expert knowl­

edge do not exist. Though tools exist to permit utilization of libraries of optimized, pre­

developed components, they are usually very tightly coupled to a single architecture.

There are very few efforts which abstract the various available modules to provide a

system transparent view and permit cross-platform utilization. There are currently some

efforts in developing such abstractions and interface tools(e.g. FLAME [43]). But, there

is no framework which exploits such abstract libraries.

Expertise in different domains can be encapsulated by using design abstractions such

as system abstractions, module characterization and application analysis. This encap­

sulated knowledge can be utilized to provide users a modular framework. A developer,

architect or a user has to understand only his domain and the appropriate abstractions in

the framework. Utilization of high level abstraction reduces the extensive development

effort in porting applications to different architectures. The performance of the modules

can be characterized by utilizing the information provided by the vendor or the module

generator. For low level modules the performance can be obtained by initial simulations

and implementations. Utilizing this information, characteristics of high level modules

can be simulated or computed without the intervention of CAD tools.

Algorithmic techniques can be utilized to map the abstract specifications to actual

designs. A software tool which synthesizes an application specification into an optimal

design on a heterogeneous reconfigurable architecture does not exist. Current system

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

complexities and application diversity does not seem to promise any such tool in the near

future. Tools which permit performance estimation and analysis and design space ex­

ploration are a more tangible goal. Important characteristics of such a framework would

be parametric variation, modularity, extensibility, efficiency, and ease of use. Interpre­

tive simulation of the application model on the system model can provide the required

performance analysis.

8.2 DRIVE Overview

Analysis and
Transformation

System
Abstraction

Performance
Characterization

Verification
Refinement

Interpretive Simulation

Architectures

System Models

Library Modules

Algorithmic
Mapping Techniques

Performance Analysis
Design Exploration

Applications

Task Models

Figure 8.1: DRIVE framework

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 8.1 shows an overview of our framework. The system architecture can be

characterized to capture the parameter space which affects the performance. The im­

plementations of various optimized modules can be encapsulated by characterizing the

performance of the module with respect to the architecture. This characterization is par­

titioned into the capabilities of the system and the actual implementations of these capa­

bilities. The application is not mapped onto a low level design but is analyzed to develop

an application task model. The application model can exploit the knowledge available

in the form of the system capabilities provided by the module characterization. Algo­

rithmic techniques are utilized to map the application task model to the system models,

to perform interpretive simulation and obtain performance results for a given set of pa­

rameter values.

Interpretive simulation is performed on the system model which permits a higher

level abstract simulation. The application does not need to be actually executed by us­

ing device level simulators like HDL models of the architectures. The performance

measures can be obtained in terms of the application and model parameters and system

characteristics. An interpretive simulation framework will permit design exploration in

terms of the architectural choices, application algorithm options, various mapping tech­

niques and possible problem decomposition onto the system components. Development

of all the full blown designs which exercise these options is a non-realizable engineer­

ing task. Simulation, estimation and visualization tools can be designed to automate this

exploration and obtain tangible results in reasonable time.

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The abstractions and the techniques that are developed are enclosed in the dashed

box in Figure 8.1. Verification of the models, mapping techniques and simulation frame­

work can be performed by mapping some designs onto actual architectures. This veri­

fication process can be utilized to expand on the abstraction knowledge and refine the

various models and techniques that are developed. The verification and refinement pro­

cess completes the feedback loop of the design cycle to result in final accurate models

and efficient techniques for optimal designs.

8.3 Other Simulation Tools

Several simulation tools have been developed for reprogrammable FPGAs. Most tools

are device based simulators and are not system level simulators. Some of the efforts in

this area are briefly described here. The most significant effort in this area has been the

Dynamic Circuit Switching(DCS) based simulation tools by Lysaght et.al. [51]. These

tools study the dynamically reconfigurable behavior of FPGAs and are integrated into

the CAD framework. Though the simulation tools can analyze the dynamic circuit be­

havior of FPGAs, the tools are still low level. The simulation is based on CAD tools and

requires the input design of the application to be specified in VHDL. The parameters

for the design are obtained only after processing by the device specific tools. Luk et.al.

describe a visualization tool for reconfigurable libraries [48]. They developed tools to

simulate behavior and illustrate design structure. Their emphasis is on visualization of

library modules and not system level simulation or application performance analysis.

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Hartenstein et. al. present a hardware/software co-design framework CoDe-X which

partitions an application into software executing on a host and hardware configurations

onto reconfigurable ALU [44]. But the system does not support a simulation framework

which can be utilized in the absence of the hardware and permit performance analysis

and architectural alternatives study. CHASTE [17] was a toolkit designed to experiment

with the XC6200 at a low level. The toolkit allows circuit specification and performs

timing analysis and simulation. But, the target of the CHASTE system is low level de­

sign exploration and not system level analysis. There are other software environments

such as JHDL [7], HOTWorks [27], Riley-2 [52], etc. But, they are software systems

for low level hardware design and evaluation and are not system level interpretive sim­

ulation frameworks.

8.4 DRIVE Framework Implementation

An overview of the major components in the DRIVE framework and their interactions

is given in Figure 8.2. The framework utilizes high level models of reconfigurable hard­

ware. The current prototype uses the HySAM model described in Chapter 5.

The main input requirements to the DRIVE framework are the model parameters

and the application tasks. The model parameters supply information about the Func­

tions, Configurations, Attributes and the Reconfiguration costs. The user can visualize

and update any of the instantiated parameters to explore the design space. For a given

model parameters, performance results can be obtained for any set of application tasks

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Application Tasks

Visualizer

Adaptation
Schedule

Architecture
Components

Mapping
Techniques

Library o f
ModulesAttributes

Model Parameters

Configurations Functions
Reconfigurable
ArchitectureHySAM Model

Figure 8.2: Major components in the DRIVE framework and the information flow

with various algorithmic mapping techniques.

The high level model partitions the description of the hardware into two compo­

nents: the Functions (capabilities) of the hardware and the Configurations (implemen­

tations). For example, ability of the hardware to perform multiplication is a capability.

The implementations are the different multiplier designs available with varying char­

acteristics such as area, time, precision, structure, etc. The user only needs to have a

knowledge of the capabilities. This input application is partitioned into tasks which are

to be executed on the CPU and the Configurable Logic Unit. The applications tasks to

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

be executed are then decomposed into a sequence of CXU functions(F). Execution of

a function on the CPU is represented as execution in a special configuration CcpU.

The application task model consists of specification of the application in terms of

the F\inctions(capabilities). The input to the framework consists of a directed acyclic

graph of the application tasks specified with the Functions as the nodes of the graph. The

edges denote the dependencies between the tasks. This technique reduces the effort and

expertise needed on the part of the user. The application need not be implemented as

an HDL design by the user to study the performance on various reconfigurable archi­

tectures. Automatic compilation efforts [9, 66] can be leveraged to generate the tasks

from high level application programs.

Algorithmic mapping techniques are then utilized to map the application specifica­

tion to actual implementations. These techniques map the capabilities to the implemen­

tations and generate a sequence of configuration, execution, and reconfiguration steps.

This is the adaptation schedule which specifies how the hardware is adapted during the

execution of the application. The schedule contains a sequence of configurations^ . . . Cq)

where each configuration C, € C. This adaptation schedule can be computed statically

for some applications by using algorithmic techniques. Also, the simulation framework

can interact with the model and the mapping algorithms to determine the adaptation

schedule at run-time.

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The interpretive simulation framework is based on module level parameterization of

the hardware. The framework is independent of a specific hardware platform. The de­

tails of the specific hardware are supplied by instantiating the parameters of the model.

This information can be obtained from the architecture design and the library compo-

nents(module generators) for that architecture. These library components or modules

form the implementations in the model and can be determined for different architectures.

Vendors and researchers have developed parameterized libraries and modules optimized

for a specific architectures. The proposed framework can exploit the various efforts in

design of efficient and portable modules [24, 49, 55]. The framework can incorporate

such knowledge as the parameters for the HySAM model.

The user can analyze the performance of the architecture for a given application by

supplying the parameters of the model and the application task. Typically the architec­

tural parameters for the model are supplied by the architecture designer and the library

designer. But, the user can modify the model parameters and explore the architecture

design space. This provides the ability to study design alternatives without the need for

actual hardware. The simulation and the performance analysis are presented to the user

through a Graphical User Interface. The framework supports incorporation of additional

information in the configurations(C) which can be utilized for actual execution or sim­

ulation. Using this information, it is possible to link the abstract definitions to actual

implementations to verify and refine the abstract models.

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The interactions between the components that are shown in Figure 8.2 depict dy­

namic information flow. The mapping algorithm can make run-time decisions to com­

pute the adaptation schedule dynamically. The adaptation schedule is utilized by the

visualizer to display the results. The visualizer does not possess any knowledge of the

current schedule step, system state or model parameters. The appropriate components

of the system are queried to obtain the required data and display it at run-time. Note

that the framework is is based on algorithmic techniques for determining the sequence

of operations. Since the simulation is module based, the schedule is based on events.

The schedule consists of events such as beginning or completion of execution or recon­

figuration. Various modes where the events can either be overlapped or non-overlapped

are also supported.

The parameters and attributes of the model can also be evaluated and adapted at run­

time to compute the required information for scheduling and visualization. For exam­

ple, reconfiguration costs can be determined by computing the difference in the con­

figuration information and configurations can even be generated dynamically by future

integration of tools like JBits [47]. It is assumed currently that the attributes for con­

figurations are available a priori. It is easy to integrate simulation tools which evalu­

ate the attributes such as execution time by performing simulations as in various mod­

ule generators [7,24,55]. These simulations are based on module generators which do

not require mapping using time consuming CAD tools. Once the attribute information

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

for low level modules are obtained by initial simulations and implementations, the at­

tributes for higher level modules can be simulated or computed without the intervention

of CAD tools.

The DRIVE framework has been designed using object-oriented methodology to

support the modification and addition to the existing components. The framework facil­

itates the addition of new architectural models, algorithmic mapping techniques, perfor­

mance analysis tools, etc. in a seamless manner. The framework can also be interfaced

to existing tools such as parameterized libraries (Xilinx XBLOX, Luk et. al. [49]), mod­

ule generators (PAM-Blox [55], Berkeley Object Oriented Modules [24], JHDL [7]),

configuration generators (JBits [47]), module interfaces (FLexible API for Module-based

Environments [43]), etc. The components of the framework will be made available to

the community to facilitate application mapping and modular extensions.

8.5 Visualization

The visualizer for the framework has been developed using the Java language AWT

toolkit. A previous version of the visualizer was developed using Tcl/Tk. The C pro­

gramming language was utilized for implementing the simulation engine. The current

prototype has been developed in Java to utilize the object oriented framework and make

the framework modular and easily extensible. Implementing the visualizer and the in­

terpretive simulation in the same language provides for a clearer interface between the

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 8.3: Sample DRIVE visualization

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

components. Java is becoming the language of choice for several research and imple­

mentation efforts in hardware design and development [7, 24, 47]. Incorporating the

results and abstractions from other research efforts is simplified using the current ver­

sion.

The visualizer acts as a graphical user interface to support the full functionality of

the framework. It is implemented as a separate Java class communicating with the re­

maining classes. Any component of the simulation or visualizer framework can be com­

pletely replaced with a different component supporting the same interface. The visual­

izer is oblivious of the algorithmic techniques and implementation details. It accesses

information from the different components in the simulation framework on an event by

event basis and displays the state of the various architecture components and the perfor­

mance characteristics. A sample view of the visualizer is shown in Figure 8.3.

8.6 DRIVE Summary

Software tools are an important component of reconfigurable hardware development

platforms. Simulation tools which permit performance analysis and design space ex­

ploration are needed. The utility of current tools for reconfigurable hardware design is

limited by the required user expertise in multiple domains. We have proposed a novel

interpretive simulation and visualization environment which supports system level anal­

ysis. The DRIVE framework supports a parameterized system architecture model. Al­

gorithmic mapping techniques have been incorporated into the framework and can be

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

extended easily. The framework can be utilized for performance analysis, design space

exploration and visualization. It is implemented in the Java language and supports flex­

ible extensions and modifications.

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 9

Conclusions and Future Directions

Two stone cutters were asked what they were doing.

The first said, “/ am cutting this stone into blocks. ”

The second replied, "I am on a team that is building a cathedral."

- Old Story

Reconfigurable computing is emerging as the platform of choice to design future

high performance systems. Reconfigurable architectures meet the performance and flex­

ibility requirements of next generation applications. Future devices which provide dy­

namic reconfigurability of both combinational logic and interconnection network based

on intermediate results promise enormous computational power.

To realize this potential we need tools which exploit these features in a non-trivial

manner. Features which future devices need to provide also need to be explored. Logic

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

synthesis is the current approach to using configurable devices in which a HDL descrip­

tion is statically compiled onto hardware. Using such automated synthesis approach is

not amenable to designing tools which analyze the run-time behavior of applications

and utilize dynamic reconfiguration.

Collapsing the numerous levels of abstraction in the automated synthesis approach

will provide a new paradigm for designing configurable computing solutions. We do

this by using a computational model of configurable computing devices which facili­

tates the algorithm synthesis approach as opposed to the logic synthesis approach. We

developed the Hybrid System Architecture Model (HySAM) to facilitate the algorithm

synthesis approach. HySAM is a parameterized abstract model which captures a wide

range of configurable systems. In our model-based approach user is exposed to the un­

derlying device characteristics which will allow him to make use of the dynamic re­

configuration features. The computational model not only allows the user to implement

algorithms in a more natural manner but also permits analysis of runtime behavior.

Automatic mapping and scheduling of applications is necessary for achieving per­

formance improvement for general purpose computing applications on reconfigurable

hardware. Mapping of applications in an architecture independent fashion can provide

a framework for automatic compilation of applications. Loop structures with regular

repetitive computations can be speeded-up by using configurable hardware. Loops form

the main portion of the computational load in most applications. In this thesis, we have

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

developed automatic techniques to map loops from application programs onto config­

urable hardware. Our algorithms are based on a general Hybrid System Architecture

Model(HySAM). We define important problems in mapping of traditional loop struc­

tures onto configurable hardware and demonstrate a polynomial time solution for one

important variant of the problem.

Our algorithmic techniques address the overheads involved in reconfiguring the hard­

ware. In current architectures the reconfiguration overheads are still significant com­

pared to the execution cost. In this thesis, we have proposed algorithmic techniques

for mapping and scheduling loops in applications onto reconfigurable hardware. The

heuristics we have developed attempt to minimize the reconfiguration overheads by ex­

ploiting designs with partial and runtime reconfiguration. The mapping of example loops

from applications illustrates that the proposed algorithms can generate high performance

configurations with reduced reconfiguration cost.

Precision variation is one of the customizations that can be provided by configurable

hardware for loop computations. In this thesis, we develop a framework for dynamic

precision management for loop computations. We have shown how the variable preci­

sion in computations can be captured by using the precision variation curve. The the­

sis described our approach to computing the precision variation curve using theoretical

analysis.

The loop mapping algorithm and the theoretical techniques we developed in the ear­

lier part of the thesis are extended to the dynamic precision management problem. The

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

DPMA algorithm that we have developed can compute the required optimal schedule

for a given operation in a loop using the precision variation curve and the set of vari­

able precision configurations. Our Hybrid System Model(HySAM) of reconfigurable

architectures facilitates the development of these algorithms using a high level abstract

model. The thesis illustrated the performance benefits achievable for an example loop

computation using our approach. We expect that the proposed approach can lead to sig­

nificant improvement in performance and automatic mapping of variable precision com­

putations on reconfigurable architectures.

In this thesis, we developed techniques to map computations onto high performance

reconfigurable pipelines to exploit architectural features of reconfigurable architectures.

Heuristic algorithms are developed to reduce the reconfiguration overheads in the pres­

ence of resource constraints. Applications are parallelized and pipelined by using data

context switching. Data context switching treats each execution of a repetitive computa­

tion as a context. Instead of switching the configuration, the data on which the datapath

is operating on is changed every cycle dynamically. This technique can parallelize loop

computations that cannot be parallelized using existing techniques on conventional ar­

chitectures.

Our optimization techniques simultaneously exploit multiple dimensions of recon­

figurable architectures. The thesis addresses the issues in developing mapping tech­

niques which exploit multiple aspects of the reconfigurable logic to deliver superior

172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

performance compared to traditional techniques. Our techniques address various appli­

cation and architectural characteristics and resource limitations in developing mapping

techniques to optimize application performance.

Software tools are an important component of reconfigurable hardware development

platforms. Simulation tools which permit performance analysis and design space ex­

ploration are needed. The utility of current tools for reconfigurable hardware design is

limited by the required user expertise in multiple domains. We have proposed a novel

interpretive simulation and visualization environment which supports system level anal­

ysis. The DRIVE framework supports a parameterized system architecture model. Al­

gorithmic mapping techniques have been incorporated into the framework and can be

extended easily. The framework can be utilized for performance analysis, design space

exploration and visualization. It is implemented in the Java language and supports flex­

ible extensions and modifications. A prototype version has been implemented and is

currently available. The USC Models, Algorithms and Architectures project is devel­

oping algorithmic techniques for realizing scalable and portable applications using con­

figurable computing devices and architectures.

The models, algorithmic techniques and simulation methodology proposed in this

thesis can be extended to address similar issues in emerging architectures and applica­

tions. In the following section we describe briefly future challenges that need to be ad­

dressed in reconfigurable computing.

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

9.1 Future Directions

In this thesis we have presented a model-based framework to develop algorithmic tech­

niques for mapping applications onto reconfigurable architectures. To our knowledge,

this is one of the first efforts to address the development of a model-based mapping

framework. There are several research areas that have to be addressed in the future to ex­

tend this research for emerging architectures and applications. We outline briefly some

of these areas:

• Enhancing the HySAM Model: Emerging architectures are integrating several dif­

ferent architecture paradigms onto the same chip. Conventional microprocessor

cores, DSP cores, reconfigurable logic, embedded memory and peripheral con­

trollers are integrated onto the same chip. Developing a model of computation and

communication that can be used to map applications and analyze performance is a

challenge. In future applications areas, power dissipation is increasingly becom­

ing as important as performance. Modeling the power dissipation in current and

emerging architectures is a critical challenge. HySAM model can be extended to

add power characteristics as part of the attribute set A. Algorithmic techniques

similar to those in this thesis can be developed to analyze and optimize the power

dissipation.

• Mapping loops: Loops continue to remain the focus for mapping onto various ar­

chitectures. Development of mapping techniques for loop computations can be

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

utilized to extend the domain of applications that can be mapped onto a given

architecture. Further research is needed to address loop computations that have

characteristics not satisfied by the assumptions in this thesis. These characteristics

include task structure, data and control dependencies, nested loops, and run-time

dependencies. Extensive research in the parallel computing on mapping loops can

be exploited to address mapping issues. However, existing techniques need to be

extended to address the reconfigurable characteristics of the hardware.

• Dynamic precision variation: The dynamic precision management framework gives

rise to a wealth of issues which can potentially provide enormous benefits to map­

ping computations onto configurable hardware. Bit-serial and digit-serial compu­

tations are one class of computations which can exploit dynamic precision without

large overheads. The control component of the design needs to execute the config­

urations for a variable number of steps based on the required precision. Run-time

precision management where the control modifies the precision of the computa­

tions are being explored. Configurable logic can be utilized to execute multiple

iterations of loops in parallel in the absence of dependencies. Reduction of the

logic resources due to dynamic precision management can be exploited to exe­

cute more number of iterations in parallel. Multi-context devices and configu­

ration caches can be utilized to reduce the reconfiguration overheads by storing

variable precision configurations.

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• Integrated mapping techniques: Hybrid architectures are experiencing a conver­

gence with future FPGAs providing multiple architectural cores and other System-

on-Chip architectures adding reconfigurable logic on-chip. There is a mixture of

computational models and programming paradigms in the different components

of such architectures. Hybrid architectures and other emerging architectures can

facilitate innovative mapping techniques that can exploit multiple aspects of the

architectures. Data context switching, developed in this thesis, is an example of

such techniques.

• Design tools: Design tools are being developed after the evolution of emerging ar­

chitectures and have not co-evolved with the architectures. Current design processes1

are based on independent design flow for each architectural component. The pro­

gramming models and the design tools for each of the individual components are

utilized to map an application. The integration is performed at a much later stage.

A standard interface between different components of the chip is the only inte­

gration that exists during the design phase. Design tools which facilitate a tighter

integration in the programming and mapping phase need to be developed.

• System level simulation and verification tools: The general purpose computing

area is the most promising to achieve significant performance improvement for

a wide spectrum of applications using reconfigurable hardware. Current design

lby design processes, methodologies and tools we refer to the aspects of developing applications using
a chip and not designing the chip.

176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

tools are based on ASIC CAD software and have multiple layers of design ab­

stractions. Simulation tools provide a means to explore the architecture and the

design space in real time at a very low resource and time cost. The absence of

mature design tools impacts the simulation environments that exist for studying

reconfigurable systems and the benefits that they offer. System level tools which

analyze and simulate the interactions between various components of the system

such as memory and reconfigurable logic are limited and are mostly tightly cou­

pled to specific system architectures. Future research in reconfigurable comput­

ing needs to explore the development of such system level design, simulation and

verification tools.

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

References

[1] R. Amerson, R. J. Carter, W. B. Culbertson, P. Kuekes, and G. Snider. Teramac
- Configurable Custom Computing. In IEEE Symposium on FPGAs for Custom
Computing Machines, pages 32-38, April 1995.

[2] S. I. Association, http://www.semichips.org.

[3] P. Athanas and A. Abbott. Real-Time Image Processing on a Custom Computing
Platform. IEEE Computer, pages 16-24, February 1995.

[4] P. Athanas and H. F. Silverman. Processor Reconfiguration Through Instruction-
Set Metamorphosis. IEEE Computer, 26(3): 11-18, March 1993.

[5] J. Babb, M. Frank, and A. Agarwal. Solving graph problems with dynamic com­
putation structures. SPIE Photonics East: Reconfigurable Technology for Rapid
Product Development and Computing, November 1996.

[6] P. Banerjee, N. Shenoy, A. Choudhary, S. Hauck, M. Haidar, P. Joisha, A. Jones,
A. Kanhare, A. Nayak, S. Periyacheri, M. Walkden,, and D. Zaretsky. A MAT-
LAB Compiler for Distributed Heterogeneous Reconfigurable Computing Sys­
tems. IEEE Symposium on FPGAs fo r Custom Computing Machines, April 2000.

[7] P. Bellows and B. Hutchings. JHDL - An HDL for Reconfigurable Systems. In
IEEE Symposium on Field-Programmable Custom Computing Machines, April
1998.

[8] R. Bittner and P. Athanas. Wormhole Run-time Reconfiguration. In ACM Inter­
national Symposium on Field Programmable Gate Arrays, pages 79-85, February
1997.

[9] K. Bondalapati, P. Diniz, P. Duncan, J. Granacki, M. Hall, R. Jain, and H. Ziegler.
DEFACTO: A Design Environment for Adaptive Computing Technology. In Re­
configurable Architectures Workshop, RAW’99, April 1999.

[10] K. Bondalapati and V. Prasanna. Reconfigurable Meshes: Theory and Practice. In
Reconfigurable Architectures Workshop, RAW’97, April 1997.

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.semichips.org

www.manaraa.com

[11] K. Bondalapati and V. Prasanna. Mapping Loops onto Reconfigurable Architec­
tures. In 8th International Workshop on Field-Programmable Logic and Applica­
tions, September 1998.

[12] K. Bondalapati and V. Prasanna. DRIVE: An Interpretive Simulation and Visual­
ization Environment for Dynamically Reconfigurable Systems. In International
Workshop on Field-Programmable Logic and Applications, September 1999.

[13] K. Bondalapati and V. Prasanna. Dynamic Precision Management for Loop Com­
putations on Reconfigurable Architectures. In IEEE Symposium on FPGAs for
Custom Computing Machines, April 1999.

[14] K. Bondalapati and V. Prasanna. Hardware Object Selection for Mapping Loops
onto Reconfigurable Architectures. In International Conference on Parallel and
Distributed Processing Techniques and Applications, June 1999.

[15] K. Bondalapati and V. Prasanna. Loop Pipelining and Optimization for Recon­
figurable Architectures. In Reconfigurable Architectures Workshop (RAW ’2000),
May 2000.

[16] K. Bondalapati and V. Prasanna. Reconfigurable Computing: Architectures, Mod­
els and Algorithms. Current Science, 78(7):828-837, April 2000.

[17] G. Brebner. CHASTE: a Hardware/Software Co-design Testbed for the Xilinx
XC6200. In Reconfigurable Architectures Workshop, RAW’97, April 1997.

[18] S. Brown and J. Rose. FPGA and CPLD Architectures: A Tutorial. IEEE Design
& Test o f Computers, Summer 1996.

[19] D. A. Buell, J. M. Arnold, and W. J. Kleinfelder. Splash 2: FPGAs in a Custom
Computing Machine. IEEE Computer Society Press, 1996.

[20] S. Cadambi, J. Weener, S. Goldstein, H. Schmit, and D. E. Thomas. Manag­
ing Pipeline-Reconfigurable FPGAs. In Proceedings ACM/SIGDA Sixth Interna­
tional Symposium on Field Programmable Gate Arrays, February 1998.

[21] T. J. Callahan and J. Wawrzynek. Instruction-Level Parallelism for Recon­
figurable Computing. International Workshop on Field Programmable Logic,
September 1998.

[22] D. Chang and M. Marek-Sadowska. Partitioning Sequential Circuits on Dynami­
cally Reconfigurable FPGAs. In IEEE Transactions on Computers, June 1999.

[23] S. Choi and V. Prasanna. Configurable Hardware for Symbolic Search Operations.
In International Conference on Parallel and Distributed Systems, Dec 1997.

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

[24] M. Chu, N. Weaver, K. Sulimma, A. DeHon, and J. Wawrzynek. Object Oriented
Circuit-Generators in Java. In IEEE Symposium on FPGAs fo r Custom Computing
Machines, April 1998.

[25] Y. Chung and V. Prasanna. Parallel Object Recognition on an FPGA-based Con­
figurable Computing Platform. In International Workshop on Computer Architec­
tures fo r Machine Perception, Oct 1997.

[26] T. Corporation, http://www.triscend.com/.

[27] V. C. Corporation. Reconfigurable Computing Products, http://www.vcc.com/.

[28] A. Dandalis, A. Mei, and V. K. Prasanna. Domain Specific Mapping for Solv­
ing Graph Problems on Reconfigurable Devices. In Reconfigurable Architectures
Workshop, April 1999.

[29] A. Dandalis and V. Prasanna. Fast Parallel Implementation of DFT using Config­
urable Devices. In 7th International Workshop on Field-Programmable Logic and
Applications, Sept 1997.

[30] A. Dandalis, V. Prasanna, and J. Rolim. An Adaptive Cryptographic Engine for
IPSec Architectures. IEEE Symposium on FPGAs for Custom Computing Ma­
chines (Submitted), April 2000.

[31] A. DeHon. DPGA-Coupled Microprocessors: Commodity ICs for the Early 21st
Century. In IEEE Symposium on FPGAs fo r Custom Computing Machines, April
1994.

[32] A. DeHon. Reconfigurable Architectures fo r General Purpose Computing. PhD
thesis, MIT AI Lab, September 1996.

[33] M. Donlin. Programmable logic and synthesis strive to get in sync. Computer
Design, August 1996.

[34] C. Ebeling, D. C. Cronquist, and P. Franklin. RaPiD - Reconfigurable Pipelined
Datapath. In 6th International Workshop on Field-Programmable Logic and Ap­
plications, 1996.

[35] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory o f NP-Completeness. W. H. Freeman and Company, 1979.

[36] M. Gokhale and J. Stone. Automatic Allocation of Arrays to Memories in FPGA
Processors with Multiple Memory Banks. In IEEE Symposium on FPGAs fo r Cus­
tom Computing Machines, April 1999.

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.triscend.com/
http://www.vcc.com/

www.manaraa.com

[37] M. B. Gokhale and A. Marks. Automatic Synthesis of Parallel Programs Targeted
to Dynamically Reconfigurable Logic Arrays. In Proceedings o f the 1995 Inter­
national Workshop on Field-Programmable Logic and Applications, Oxford, Eng­
land, September 1995.

[38] S. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, , and R. Taylor.
PipeRench: A Reconfigurable Architecture and Compiler. IEEE Computer, April
2000.

[39] P. Graham and B. Nelson. Genetic Algorithms In Hardware and In Software -
A Performance Analysis of Workstation and Custom Computing Machine Imple­
mentations. In IEEE Symposium on FPGAs fo r Custom Computing Machines,
April 1996.

[40] S. Hauck. The Roles of FPGAs in Programmable Systems. Proceedings o f the
IEEE, 86, April 1998.

[41] J. Hauser and J. Wawrzynek. Garp: A MIPS Processor with a Reconfigurable
Coprocessor. In IEEE Symposium on FPGAs fo r Custom Computing Machines,
pages 12-21, April 1997.

[42] R. T. J. Babb and A. Agarwal. Virtual Wires: Overcoming Pin Limitations in
FPGA-based Logic Emulators. IEEE Workshop on FPGAs for Custom Computing
Machines, April 1993.

[43] A. Koch. Unified access to heterogeneous module generators. In ACM Interna­
tional Symposium on Field Programmable Gate Arrays, February 1999.

[44] R. Kress, R. Hartenstein, and U. Nageldinger. An Operating System for Custom
Computing Machines based on the Xputer Paradigm. In 7th International Work­
shop on Field-Programmable Logic and Applications, pages 304-313, Sept 1997.

[45] A. Lawrence, A. Kay, W. Luk, T. Nomura, and I. Page. Using reconfigurable
hardware to speed up product development and performance. In 5th International
Workshop on Field-Programmable Logic and Applications, 1995.

[46] E. Lemoine and D. Merceron. Run Time Reconfiguration of FPGA for Scanning
Genomic Databases. In IEEE Symposium on FPGAs for Custom Computing Ma­
chines, 1995.

[47] D. Levi and S. Guccione. Run-Time Parameterizable Cores. In ACM Interna­
tional Symposium on Field Programmable Gate Arrays, February 1999.

[48] W. Luk and S. Guo. Visualising reconfigurable libraries for FPGAs. In Asilomar
Conference on Signals, Systems, and Computers, 1998.

181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

[49] W. Luk, S. Guo, N. Shirazi, and N. Zhuang. A Framework for Developing
Parametrised FPGA Libraries. In Field-Programmable Logic, Smart Applica­
tions, New Paradigms and Compilers, 1996.

[50] W. Luk, N. Shirazi, S. Guo, and P. Cheung. Pipeline Morphing and Virtual
Pipelines. In 7th International Workshop on Field-Programmable Logic and Ap­
plications, Sept 1997.

[51] P. Lysaght and J. Stockwood. A Simulation Tool for Dynamically Reconfigurable
FPGAs. IEEE Transactions on VLSI Systems, Sept 1996.

[52] P. Mackinlay, P. Cheung, W. Luk, and R. Sandiford. Riley-2: A Flexible Plat­
form for Codesign and Dynamic Reconfigurable Computing Research. In 7th In­
ternational Workshop on Field-Programmable Logic and Applications, September
1997.

[53] T. Maruyama and T. Hoshino. A C to HDL Compiler for Pipeline Processing
on FPGAs. IEEE Symposium on FPGAs for Custom Computing Machines, April
2000.

[54] P. Master and K. Lane. Powering up 3G Handsets for MPEG-4 Video. Commu­
nication Systems Design, January 2001.

[55] O. Mencer, M. Morf, and M. Flynn. PAM-Blox: High Performance FPGA Design
for Adaptive Computing. In IEEE Symposium on FPGAs for Custom Computing
Machines, April 1998.

[56] A. Microsystems, http://www.annapmicro.com/.

[57] X. A. Notes. A Fast Constant Coefficient Multiplier for the XC6200.

[58] X. D. A. Notes. The Fastest FFT in the West,
http://www.xilinx.com/apps/displit.htm.

[59] R. Payne. Run-time Parameterised Circuits for the Xilinx XC6200. In 7th Interna­
tional Workshop on Field-Programmable Logic and Applications, pages 161-172,
Sept 1997.

[60] R. Petersen and B. Hutchings. An Assessment of the Suitability of FPGA-Based
Systems for use in Digital Signal Processing. In 5th International Workshop on
Field-Programmable Logic and Applications, 1995.

[61] A. N. S.C. E. Processor, http://www.altera.com/html/products/nios.html.

[62] K. M. G. Puma and D. Bhatia. Temporal Partitioning and Scheduling Data Flow
Graphs for Reconfigurable Computers. In IEEE Transactions on Computers, June
1999.

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.annapmicro.com/
http://www.xilinx.com/apps/displit.htm
http://www.altera.com/html/products/nios.html

www.manaraa.com

[63] A. Rashid, J. Leonard, and W. H. Mangione-Smith. Dynamic Circuit Generation
for Solving Specific Problem Instances of Boolean Satisfiability. IEEE Symposium
on FPGAs fo r Custom Computing Machines, April 1998.

[64] R. Razdan. PRISC: Programmable
Reduced Instruction Set Computers. PhD thesis, Harvard University, May 1994.
ftp.eecs.harvard.edu:users/smith/theses/razdan-thesis.tar.gz.

[65] J. Rose, A. E. Gamal, and A. Sangiovanni-Vincentelli. Architecture of Field Pro­
grammable Gate Arrays. Proceedings o f the IEEE, July 1993.

[66] C. Rupp, M. Landguth, T. Garverick, E. Gomersall, H. Holt, J. Arnold, and
M. Gokhale. The NAPA Adaptive Processing Architecture. In IEEE Symposium
on FPGAs for Custom Computing Machines, April 1998.

[67] S. Scalera and J. Vazquez. The design and implementation of a context switch­
ing FPGA. In IEEE Symposium on Field-Programmable Custom Computing Ma­
chines, April 1998.

[68] N. Semiconductor. Configurable Logic Array (CLAy) Data Sheet, Dec 1993.

[69] N. Shirazi, P. Athanas, and A. Abbott. Implementation of a 2-D Fast Fourier
Transform on an FPGA-Based Custom Computing Machine. In International
Workshop on Field-Programmable Logic and Applications, 1995.

[70] R. P. Sidhu, A. Mei, and V. K. Prasanna. Genetic Programming using Self-
Reconfigurable FPGAs. In International Workshop on Field Programmable Logic
and Applications, September 1999.

[71] R. Subramanian, N. Ramasubramanian, and S. Pande. Automatic Analysis of
Loops to Exploit Operator Parallelism on Reconfigurable Systems. In Languages
and Compilers for Parallel Computing, August 1998.

[72] C. Systems, http://www.chameleonsystems.com/.

[73] A. Tenca and M. Ercegovac. A Variable Long-Precision Arithmetic Unit Design
for Reconfigurable Coprocessor Architectures. In IEEE Symposium on Field-
Programmable Custom Computing Machines, April 1998.

[74] S. Trimberger, D. Carberry, A. Johnson, and J. Wong. A Time-Multiplexed FPGA.
In IEEE Symposium on FPGAs fo r Custom Computing Machines, pages 22-28,
April 1997.

[75] B. P. URL. http://HTTP.CS.Berkeley.EDU/Research/Projects/brass/.

183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.chameleonsystems.com/
http://HTTP.CS.Berkeley.EDU/Research/Projects/brass/

www.manaraa.com

[76] J. Vuillemin, P. Bertin, D. Roncin, M. Shand, H. Touati, and P. Boucard. Pro­
grammable Active Memories: Reconfigurable Systems Come of Age. IEEE
Transactions on VLSI Systems, 4(l):56-69, March 1996.

[77] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank,
P. Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal. Baring it all to
Software: Raw Machines. IEEE Computer, pages 86-93, September 1997.

[78] M. Weinhardt. Compilation and Pipeline Synthesis for Reconfigurable Architec­
tures. In Reconfigurable Architectures Workshop(RAW’ 97). ITpress Verlag, April
1997.

[79] M. Weinhardt and W. Luk. Pipeline Vectorization for Reconfigurable Systems. In
IEEE Symposium on Field-Programmable Custom Computing Machines(FCCM
'99), April 1999.

[80] M. J. Wirthlin and B. L. Hutchings. Improving Functional Density Through Run­
Time Constant Propagation. In ACM International Symposium on Field Pro­
grammable Gate Arrays, pages 86-92, February 1997.

[81] M. E. Wolf and M. S. Lam. A Loop Transformation Theory and an Algorithm to
Maximize Parallelism. IEEE Transactions on Parallel and Distributed Systems,
2(4):452-471, October 1991.

[82] Xilinx. XC6200 Field Programmable Gate Arrays, 1996.

[83] Xilinx Inc.(www.xilinx.com). Virtex Series FPGAs.

[84] Xilinx Inc.(www.xilinx.com). Xilinx Platform FPGAs.

[85] P. Zhong, M. Martonosi, P. Ashar, and S. Malik. Solving Boolean Satisfiability
with Dynamic Hardware Configurations. International Workshop on Field Pro­
grammable Logic, September 1998.

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.xilinx.com
http://www.xilinx.com

